技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
AI・ディープラーニング・機械学習は、生産ライン、医療、インターネットサービスなど、様々な分野で応用・実用化され、多くの人がこの技術にさらなる期待を寄せています。しかし、もちろんAIや機械学習がなんでもできるわけではありません。何ができて何ができないのか、これをしっかり理解するためには機械学習の基本原理を理解することが重要です。
本講では、AIや機械学習を導入したいと考えているが機械学習でどんなことができるのかをきちんと理解したい、知りたい方に向けて、機械学習の考え方の道筋、基本的な重要な概念をじっくり説明します。数式はできるだけ使わずに、グラフを使って直感的な解説をします。
今やAI技術の主流となっているディープラーニングでは、ニューロンの働きを疑似的に多重化したニューラルネットワークを利用しています。
本セミナーでは、AI技術の概要から始めてディープラーニングとはどのようなものなのか、そしてGoogle社のディープラーニング (深層学習) フレームワークであるTensorFlowの機能および使い方に解説を進めます。その後、TensorFlow の稼働環境を構築して、稼働環境上でのサンプル実行とサンプル内容の解説へと進めていき、TensorFlow のディープラーニングを実現するコード記述スタイルが理解できるようにしていきます。
本セミナーでは、画像認識問題を題材に、Deep Learning及び、Deep Learningのプログラミングについて解説いたします。
自動車産業をはじめとして、さまざまな産業界でモデルベース開発の重要性が認識されてきました。本セミナーでは、究極のモデルベースアプローチであるカルマンフィルタについて、できるだけわかりやすく解説することを試みます。カルマンフィルタは、対象である時系列、あるいはシステムの数学モデルが与えられたとき、雑音が混入した観測データから対象の状態を推定 (フィルタリング) する方法です。
本セミナーでは、カルマンフィルタの基礎理論について詳細に解説します。センシング、制御、あるいは機械学習などのAI の分野とカルマンフィルタの関係についても述べます。できれば、古典制御や現代制御、確率過程などの知識をお持ちの方が望ましいですが、高等学校の数学の知識があれば、本セミナーを理解できるようにお話ししたいと考えています。
本セミナーでは、まず、線形カルマンフィルタのアルゴリズムを紹介し、数値例を通してカルマンフィルタの仕組みについて学習します。つづいて、非線形カルマンフィルタの考え方を簡単に述べます。最後に、カルマンフィルタを利用する上で重要である時系列データのモデリングについてもお話しします。
機械学習、ディープラーニングの概要を解説します。また、Chainerを利用したサンプルプログラムを解説しながら、実際のデータをどう扱うかも解説します。サンプルは、【画像分類 (CNNによる分類) 】、【音による異常検知 (正常時の音からモデルを作成し、音の変化で異常発生を検知します) 】、【強化学習】を用意します。
近年、人工知能関連技術の種々の応用が盛んに行われ、ロボットへの応用も期待を集めている。ロボットを自動的に動かし人手での調整等の介在を減らす (自律化) 技術は、地図生成、運動計画、学習制御、パタン認識など多岐にわたる技術的側面を有する。
本セミナーでは、動作するロボットへの応用に関連する運動計画・地図生成・パタン認識・機械学習・強化学習等の諸技術の概略を解説し、ロボットの自律化に関連する技術・研究動向を述べる。
本セミナーでは、画像・音声・動画認識などの様々な技術を高精度化させるディープラーニングについて、基礎から学習法、各技術への応用例、自律ロボットの動作・言語学習などについて解説いたします。
本セミナーでは、まずウェアラブルセンサと機械学習によるココロの予測・推定の有用性と必要性について触れ、これらを導入し、活用するための留意点について解説するとともに、質疑応答を通して理解を深めます。その上で、ストレス負荷時の生体信号の変化や認知的負荷時の動作の変化について解説し、動作と生体信号、ストレス、認知的負荷の関係についての理解を深めます.また実例を交えて、機械学習を解説し、理解を深めます。
本セミナーを受講することで、ウェアラブルバイタルセンサやモーションセンサを用いたココロの可視化や機械学習を活用したインテリジェント製品の開発に役立ちます。
本セミナーでは、自動運転の要素技術について取り上げ、自動運転時のドライバ状態推定、自動運転異常時のドライバの応答評価、自動運転に関わる法規制など、スムーズで安全な運転権限移譲の実現へ向けた研究事例と課題について詳解いたします。
実験計画法は、少ない実験回数で多くの構成要素が関係する現象の解析が可能です。その解析方法を使うと、本来、数千通りの実験が必要な場合でも、数十通りの実験回数で、構成要素間の最適な組合せ (因子ごとの最適条件) を見つけることが可能です。
しかしながら、解析の前提として構成要素の組合せ効果が線形モデル (構成要素の影響が足し算で構成された単純なモデル) に基づくことを前提にしており、構成要素が複雑に絡みあう製造業の開発では、最適条件の推定が外れることが多々ありました。
本セミナーでは、実験計画法の原理と問題点の解説を行い、その問題点を補うために人工知能の一種であるニューラルネットワークモデル (超回帰モデル) を併用した製造業の開発により適した非線形実験計画法を解説いたします。
実験計画法の導入を考えている初学者の方、これまで実験計画法や品質工学 (タグチメソッド) を使ったが上手く行かなかったという方々に、具体的な解決策を詳細に説明します。
本セミナーでは、実験計画に機械学習技術を導入するための必要知識を事例とともに解説いたします。
本セミナーでは、最近注目されているDeep Learning (ディープラーニング) について、基礎的なところから応用事例まで解説いたします。
本セミナーでは、時系列データを対象にし、データの個性を定量化する統計的指標や、数式として表現する時系列モデルを多数紹介いたします。更に、応用として「将来予測」や「異常検知」に着眼し、より高度な機械学習モデルを取り入れつつ、実務への応用をサポートいたします。
本セミナーでは、機械学習について基礎から解説し、ディープラーニングの具体的な実践方法をわかりやすく解説いたします。
本セミナーはPC実習を交えて、機械学習の本質を理解し、Pythonライブラリの基本的な使い方を習得していただきます。
本セミナーでは、強化学習の基礎から解説し、基本的なアルゴリズムからチューニング、最新応用についてわかりやすく解説いたします。
本セミナーでは、マテリアルズ・インフォマティクスを活用して最適かつ効率よく材料を開発するための手法、設計技術を詳解いたします。