技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

実務に成果をもたらす「人工知能」導入 & 活用方法

実務に成果をもたらす「人工知能」導入 & 活用方法

~3つの事例を通して学ぶディープラーニング・MTシステム活用ノウハウ / 開発実験環境の仮想化・仮想検査 (センサレスセンシング) ・未知の異常検知を実現するAI技術活用法~
愛知県 開催 会場 開催

開催日

  • 2019年7月31日(水) 10時00分16時30分

修得知識

  • 要素技術、生産システム、加工技術の開発者に適した人工知能技術の基礎知識と応用ノウハウ
  • 最先端で未成熟な技術ではなく、製造業で実績があり、簡便に使える人工知能の知識
  • エクセルのように簡単に使える人工知能構築ツールやアルゴリズム
  • 「製品設計条件 (寸法仕様、材料仕様など) 」と生産条件」から量産時の製品特性値をバラツキも含めて人工知能に精密に予測させる方法
  • 上記の量産時性能予測技術を利用した、製品設計条件と生産条件を試作レスで最適化する技術の構築方法 (レシピジェネレーターの開発方法)
  • 抜き取り検査しかできなかった工程を人工知能による推定全数検査化する方法
  • 検査工程を作らず、加工工程自体が検査工程になる仮想検査の構築方法
  • 直接計測不可能な特性を代替え特性から推定するセンサレスセンシングを構築する方法
  • 学習していない未知の異常も検出する技術を活用した検査システム、設備の予防保全システムを構築する方法
  • 人的な官能 (感性) 検査を機械化 (自動化) する方法
  • 製造業における人工知能の使いこなしノウハウ
  • 第四次産業型の補助金申請に必要なIoT&AIシステム構成と処理フローの事例 など

プログラム

 最先端技術であるディープラーニングが話題になり、人工知能ブームが再来していると言われています。最先端の技術は重要ではありますが、製造業の技術者が開発実務に活用するには敷居が高いことが課題ではないでしょうか? このように人工知能には、活用が難しいイメージがありますが、ものづくり分野に絞れば、適切な手法の使い分けとノウハウで意外と簡単に活用可能です。ディープラーニングを含む人工知能にも、アカデミックな最先端技術に対して成熟した「エンジニアリングに適した技術」があり、その技術はものづくりの開発現場で安心して使うことが可能です。
 本講座では、エンジニアリングに適した人工知能技術であるニューラルネットワークモデルとMTシステムに関して、基礎的な解説を行った上で、製造業における具体的な事例を用いて応用ノウハウを解説します。ものづくり技術者にとって、人工知能は目的ではなく、技術課題を解決する手段、ツールとして使えることが理想的です。本講座で解説するエンジニアリングに適した人工知能技術を使うことで、技術者は、解決すべき技術課題に集中することが可能になります。

  1. 人工知能活用による事例概要
    • 製造業に特化した人工知能活用 (本講義) の全体像
    • 設計、材料、生産条件を統合した現実さながらの予測式構築と自動開発技術 (開発実験環境の仮想化、レシピジェネレーター技術) 概要
    • 加工状況データから加工品質を推定する検査機レス検査技術概要
      • 仮想検査技術
      • センサレスセンシング技術
    • 未学習の未知異常検知技術 (予防保全技術) 概要
  2. 人工知能技術の概要
    • 要素技術者から見た開発ツールとしての人工知能技術の比較
    • 参考:データ採取のポイント (ビッグデータの誤解)
    • 補足:ニューラルネットワークモデルはブラックボックス?
    • 要素技術者に適した人工知能構築ツールの比較
  3. ニューラルネットワークモデル構築の実演
    • 簡単な関係性を人工知能に学習させ、その後推定させる
    • 複雑な関係性を人工知能に学習させ、その後推定させる
    • 品質工学、実験計画法の直交表を応用した学習データ
    • 推定に問題ある場合の対処法1
    • 推定に問題ある場合の対処法2
    • 難しい排他的論理和問題を人工知能に解かせる
  4. 事例1 ニューラルネットワークモデル活用
    • 設計、材料、生産条件を統合した現実さながらの予測式構築と自動開発技術 (開発実験環境の仮想化、レシピジェネレーター技術)
    • 毎年繰返し行っていた電磁石コイルの開発を、設計条件と生産条件を合わせてパソコン上で自動開発を可能にした事例を解説
    • 背景:電磁石コイルの繰返し開発の紹介
    • 製品設計部門と工法開発部門、量産部門の役割分担
    • 汎用巻線技術の開発 – 設計条件と設備条件の密接な関係
    • 個別最適解を求める「設計条件×設備条件=性能の平均値とバラつき」方程式の探求
    • 人工知能活用の実施手順
    • データ収集の実験計画とその勘所
    • データの説明性確保の課題と解決策
    • データ数不足の解決策 要素技術を活かしたデータ増殖
    • 試作レス開発環境の構築例
    • 人工知能の推定が間違った場合の対処方法
    • 本事例を応用可能な別事例の紹介
  5. 事例2 ニューラルネットワークモデル活用
    • 加工状況データから加工品質を推定する検査機レス検査技術 (仮想検査技術、センサレスセンシング技術)
    • 溶接の抜取り破壊検査工程を、溶接と同時に溶接強度を推定し、全数検査と量産品質トレンドや設備状態のモニタリングを可能にした事例を解説
    • 背景:溶接と抜取り破壊検査の紹介
    • 全数検査化に先立つ要素技術
    • 人工知能活用の実施手順
    • データ収集、及び人工知能による強度推定のシステム構築例
    • システムの動作フローチャート
    • 本事例を応用可能な別事例の紹介
  6. 事例3 MTシステム活用
    • 未学習の未知異常検知技術 (予防保全技術)
    • 事前に学習できない未知の異常・不良を検出したい場合の対処方法を、エンジンの異常音など、聴感による人的官能検査工程を自動化した事例を元に解説
    • 背景:異常音で判断する官能検査工程の紹介
    • 定義できる不良音と定義できない不良音。未知の不良を見つける必要性
    • MTシステム (MT法) とは
    • 人工知能活用の実施手順
    • データ収集、及び人工知能による異常音推定システム構築例
    • システムの動作フローチャート
    • 本事例を応用可能な別事例の紹介
  7. 全体質疑応答

会場

愛知県産業労働センター ウインクあいち

11F 1107

愛知県 名古屋市中村区 名駅4丁目4-38
愛知県産業労働センター ウインクあいちの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,278円 (税別) / 49,980円 (税込)

案内割引・複数名同時申込割引について

R&D支援センターからの案内登録をご希望の方は、割引特典を受けられます。
案内および割引をご希望される方は、お申込みの際、「案内の希望 (割引適用)」の欄から案内方法をご選択ください。
複数名で同時に申込いただいた場合、1名様につき 23,139円(税別) / 24,990円(税込) で受講いただけます。

  • R&D支援センターからの案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 43,750円(税別) / 47,250円(税込)
    • 2名様でお申し込みの場合 : 2名で 46,278円(税別) / 49,980円(税込)
    • 3名様でお申し込みの場合 : 3名で 69,417円(税別) / 74,970円(税込)
  • R&D支援センターからの案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 46,278円(税別) / 49,980円(税込)
    • 2名様でお申し込みの場合 : 2名で 92,556円(税別) / 99,960円(税込)
    • 3名様でお申し込みの場合 : 3名で 138,833円(税別) / 149,940円(税込)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/12/24 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2025/12/24 アンケート・官能評価の多変量解析 統計解析の応用編 オンライン
2026/1/6 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2026/1/13 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/14 研究・実験データの収集、一元化とプラットフォーム構築 オンライン
2026/1/15 逆問題解析による材料の構造、プロセス条件設計 オンライン
2026/1/15 Pythonではじめる機械学習応用講座 オンライン
2026/1/15 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/15 Pythonを用いた実験計画法とその最適化 オンライン
2026/1/16 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/19 マテリアルズ・インフォマティクスの実践と低誘電材料開発への応用 オンライン
2026/1/19 実験の実務 : 実験を効率化して確実に成果を生む実験ノート (記録) の書き方 オンライン
2026/1/19 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/20 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/21 利益損失を防ぐ自社と顧客の経済的リスクを根拠にした「安全係数と検査基準・規格値」決定法 オンライン
2026/1/22 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/22 利益損失を防ぐ自社と顧客の経済的リスクを根拠にした「安全係数と検査基準・規格値」決定法 オンライン
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/1/26 Pythonを用いた実験計画法とその最適化 オンライン

関連する出版物