技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

時系列データ分析の進め方と活用のポイント

時系列データ分析の進め方と活用のポイント

東京都 開催 会場 開催

概要

本セミナーでは、時系列データ分析について基礎から解説し、様々な時系列モデル、機械学習、異常検知の使い分けや予測精度を向上させる集団学習方法について詳解いたします。

開催日

  • 2019年8月30日(金) 10時00分17時00分

プログラム

 時系列データは様々な実務に用いるにも関わらず、なぜか大学では主に経済学部でしか学ぶ機会がなく、理系出身のエンジニアの方々はお困りだろうと察します。また、限られた勤務時間の中で独学を試みても、数式ばかりの教科書に難儀されているのではないでしょうか。
 そこで本セミナーでは、図解による分かり易さを重視し、フリーソフトPythonによる実践方法を多数紹介します。特に、データの個性を定量化する統計分析や、数式化する時系列モデルを紹介した後。人工知能技術として「将来予測」や「異常検知」に応用します。これらのプログラムは全て配布しますので、復習やご自身の業務にご活用いただけます。

  1. 時系列データの分析手法
  2. 時系列データのモデル化
  3. 時系列データの予測と異常検知
    1. 将来予測への応用
      1. モンテカルロシミュレーションによる長期予測
      2. 残差の時間構造も考慮する方法
    2. 異常検知への応用
      1. 予測モデルを使う方法
      2. 予測モデルを使わない方法
  4. 機械学習による学習力の強化
    1. 線形モデルと非線形モデルの違い
      1. 重回帰分析から「非線形重回帰分析」へ
      2. 最も手軽なのに高性能な「k近傍法」
      3. 機械学習の失敗につながる「次元の呪い」
      4. 交差確認法 (CV法)
      5. モデルパラメータとハイパーバラメータの違い
    2. ニューラルネットワーク
      1. 単一ニューロンモデルの学習則 (最急勾配法)
      2. ニューラルネットワークの学習則 (逆誤差伝搬法)
      3. 多層ニューラルネットの問題点 (勾配消失問題,過学習)
      4. 深層学習を可能にしたオートエンコーダ
  5. 様々な時系列モデルの使い分け
  6. 様々な機械学習の使い分け
  7. 様々な異常検知の使い分け
  8. ニューラルネットワークから深層学習へ
  9. 決定木による学習結果の可視化
  10. 集団学習による学習力の強化
    1. 多数決で予測精度を向上させる
    2. 予測精度が向上する理由 (集合知定理)
    3. いろいろな集団学習
    4. バイアス・バリアンス分解
    5. 集団学習の活用事例
  11. PythonとRを連携して使うテクニック
  12. Pythonによるデモンストレーション
    • 質疑応答

講師

  • 鈴木 智也
    茨城大学 工学部 知能システム工学科
    教授

会場

株式会社 技術情報協会
東京都 品川区 西五反田2-29-5 日幸五反田ビル8F
株式会社 技術情報協会の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 54,000円 (税込)
複数名
: 45,000円 (税別) / 48,600円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、
    1名あたり 45,000円(税別) / 48,600円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 54,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,000円(税別) / 97,200円(税込)
    • 3名様でお申し込みの場合 : 3名で 135,000円(税別) / 145,800円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/7/9 工業触媒の基礎 (活性試験、評価) と劣化対策、スケールアップ オンライン
2025/7/9 ChatGPTとPythonによる業務自動化・データ分析 オンライン
2025/7/11 オンコロジー領域における医薬品売上予測手法とデータ収集及び注意点 オンライン
2025/7/14 臨床試験で必要となる統計解析入門 オンライン
2025/7/14 オンコロジー領域における医薬品売上予測手法とデータ収集及び注意点 オンライン
2025/7/15 開発の質と効率を向上する汎用的インフォマティクス & 統計的最適化 実践入門 オンライン
2025/7/15 統計手法の基礎 オンライン
2025/7/16 開発の質と効率を向上する汎用的インフォマティクス & 統計的最適化 実践入門 オンライン
2025/7/16 データ分析のための統計入門 オンライン
2025/7/17 製造業の「実務」で使う統計・多変量解析による実践的データ分析 オンライン
2025/7/17 説明可能AI (XAI) から人と共に進化・発展するAIへ オンライン
2025/7/18 システム同定による制御のためのモデリング (実践編) オンライン
2025/7/18 多変量解析入門 オンライン
2025/7/18 検定・推定 (主に計量値) オンライン
2025/7/22 第一原理計算と機械学習を活用した材料設計と応用展開 オンライン
2025/7/23 非統計家への分析法バリデーションに必要となる統計解析の基礎と実践 東京都 会場・オンライン
2025/7/23 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン
2025/7/23 第一原理計算と機械学習を活用した材料設計と応用展開 オンライン
2025/7/24 外観検査のデジタル化・自動化 オンライン
2025/7/24 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン

関連する出版物

発行年月
2024/10/31 少ないデータによるAI・機械学習の進め方と精度向上、説明可能なAIの開発
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/8/31 医療機器の設計開発における統計的手法とそのサンプルサイズ設定
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/10/18 医療機器の設計・開発時のサンプルサイズ設定と設定根拠
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/12/30 実践Rケモ・マテリアル・データサイエンス
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2018/4/25 統計学的アプローチを活用した分析法バリデーションの評価及び妥当性