技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、アンサンブル学習とよばれるデータサイエンスの手法について取り上げ、バギング、ランダムフォレスト、ブースティングの基本的な考え方からPythonによる実装例までやさしく解説いたします。
本セミナーでは、アンサンブル学習とよばれるデータサイエンスの手法について、Pythonによるデモを交えて解説いたします。
本セミナーでは、機械学習を用いた「時系列データ分析」の基礎から、「将来予測」「異常検知」等への応用をわかりやすく解説いたします。
本セミナーでは、機械学習を用いた「時系列データ分析」の基礎から、「将来予測」「異常検知」等への応用をわかりやすく解説いたします。
本セミナーでは、機械学習を用いた「時系列データ分析」の基礎から、「将来予測」「異常検知」等への応用をわかりやすく解説いたします。
本セミナーでは、機械学習を用いた「時系列データ分析」の基礎から、「将来予測」「異常検知」等への応用をわかりやすく解説いたします。
本セミナーでは、機械学習を用いた「時系列データ分析」の基礎から、「将来予測」「異常検知」等への応用をわかりやすく解説いたします。
本セミナーでは、画像局所特徴量 ( SIFT , HOG )と統計的学習手法(AdaBoost)・アサンブル学習法(Random Forests)の組み合わせによる物体認識について、基礎からわかりやすく解説いたします。
本セミナーでは、画像局所特徴量 ( SIFT , HOG )と統計的学習手法(AdaBoost)・アサンブル学習法(Random Forests)の組み合わせによる物体認識について、基礎からわかりやすく解説いたします。