技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

機械学習による画像物体認識の仕組みと最新動向

機械学習による画像物体認識の仕組みと最新動向

~AdaBoost, Random Forest, Deep Learning等の機械学習アルゴリズムと画像認識への応用について解説~
東京都 開催 会場 開催

開催日

  • 2019年8月27日(火) 10時00分 17時00分

受講対象者

  • 画像処理・物体認識に関連する技術者
    • デジタルカメラ、デジタルビデオカメラ
    • 印刷、カラーコピー機
    • テレビ・ディスプレイ
    • レーザ計測、位置決め
    • 医用画像処理、医療機器制御
    • 衛星画像処理
    • 超解像技術
    • ロボットのカメラ、制御
    • 外観検査装置
    • 非破壊検査装置
    • 車載カメラ
    • 防犯カメラ など

修得知識

  • 画像局所特徴量の基礎
    • SIFT
    • PCA-SIFT
    • GLOH
    • SURF
    • Randomized Trees
    • HOG
    • Haar-like
  • 統計的学習手法の基礎
    • AdaBoost
    • Real AdaBoost
  • 物体検出システムの構築

プログラム

  1. 局所特徴量と機械学習 (2クラス識別器) による画像認識
    • 物体検出は、局所特徴量と統計的学習手法の組み合わせにより実現されています。顔検出として、Haar-like特徴とAdaBoost識別器を解説した後、人検出で用いられるHOG特徴量等について解説します。
      1. Haar-like特徴と顔検出
      2. AdaBoostのアルゴリズム
      3. HOG特徴と人検出 (Histograms of Oriented Gradients)
      4. その他の画像局所特徴量
  2. 多クラス識別器Random Forestによる画像認識
    • Random Forestは、バギングや特徴選択等のランダム性を取り入れながら、決定木をアンサンブルに構築するアプローチで、多くのアプリケーションで利用されています。Random Forestのアルゴリズムとその応用例として、Kinectの人体姿勢推定手法について解説します。また、Random Forestの回帰への応用であるRegression Forestや、半教師付学習等についても解説します。
      1. Random Forest
      2. Random Forestを用いた距離画像からの人体姿勢推定
      3. Regression Forestによる回帰
  3. Deep Learningによる画像認識
    • 機械学習における最新の研究動向として、Deep Learning について概説し、畳み込みニューラルネットワークのしくみと画像認識への適用について解説します。また、End-to-end学習などのDeep Learningによる最新動向と今後の課題についても紹介します。
      1. 深層学習の現在
      2. 畳み込みニューラルネットワーク
      3. CNNによる画像認識
        1. 一般物体認識 (画像分類)
        2. 物体検出
        3. セマンティックセグメンテーション
      4. マルチタスク
      5. 視覚的説明

講師

  • 藤吉 弘亘
    中部大学 工学部 ロボット理工学科
    教授

会場

中央大学 駿河台記念館
東京都 千代田区 神田駿河台3丁目11−5
中央大学 駿河台記念館の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 50,760円 (税込)
1口
: 59,000円 (税別) / 63,720円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/1/17 自己位置推定・環境地図作成のためのコンピュータビジョン・画像処理 オンライン
2025/1/20 ベイズ最適化を活用した実験の効率化と開発期間短縮 オンライン
2025/1/20 Pythonを用いてコンピュータビジョンの理論と実践を学ぶ オンライン
2025/1/21 MTシステム (MT法) の基礎および異常検知・異常モニタリング・予防保全技術入門 オンライン
2025/1/23 時系列データ分析 入門 オンライン
2025/1/24 着実にステップアップできる多変量解析講座 オンライン
2025/1/28 画像の品質を高精度に評価する方法のノウハウ オンライン
2025/1/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/1/29 説明可能AI (XAI) から人と共に進化・発展するAIへ オンライン
2025/1/29 Python実践データ分析/機械学習 オンライン
2025/1/30 マテリアルズ・インフォマティクスの基礎と実践 オンライン
2025/1/30 テラヘルツ波デバイスの基礎と産業応用への新展開 オンライン
2025/2/4 カルマンフィルタの実践 オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/7 Python を用いたスペクトルデータ解析 (後編) オンライン
2025/2/10 目的に応じた統計手法の選択とデータ解析のポイント オンライン
2025/2/10 生成AI・LLM活用へのデータ整理、システム構築とRAGを用いた検索精度向上 オンライン
2025/2/10 着実にステップアップできる多変量解析講座 オンライン
2025/2/12 実験短縮、研究開発効率化へのMI、生成AI、ロボット導入と活用のポイント オンライン

関連する出版物

発行年月
2024/4/8 画像認識技術・システム 技術開発実態分析調査報告書 (CD-ROM版)
2024/4/8 画像認識技術・システム 技術開発実態分析調査報告書
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー
2021/10/25 AIプロセッサー (CD-ROM版)
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2016/1/20 画像ワーピング技術とその応用
2015/8/17 防犯・監視カメラ〔2015年版〕 技術開発実態分析調査報告書
2015/8/17 防犯・監視カメラ〔2015年版〕 技術開発実態分析調査報告書 (CD-ROM版)