技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、製造加工業の中でも特に品質検査 (表面・外観検査) 、故障診断と欠陥予知という三つの分野に応用した最新鋭のディープラーニング技術を紹介いたします。
応用事例を取り上げながら、解析手法の原理、解析手法の解析プロセスの詳細、検証結果を詳解いたします。
本セミナーでは、生成AIを活用する上での基本から、異常検知のための学習データの生成、導入に向けた実践方法をわかりやすく解説いたします。
本セミナーは、新材料設計、材料製造プロセスの効率化、画像による材料検査の自動化を目指す技術者や研究者にとって、業務の質を向上させ、競争力を高めるための知識とスキルを提供いたします。
本セミナーでは、多目的最適化について初歩から応用まで体系的に理解するとともにその実践方法について理解するため、理論面だけでなく、得られた複数の解候補に対する解分析、PythonやMatlabで公開されている多目的最適化のためのツール紹介まで行います。
本セミナーでは、生成AIを活用する上での基本から、異常検知のための学習データの生成、導入に向けた実践方法をわかりやすく解説いたします。
本セミナーでは、Pythonの基礎から解説し、ChatGPTを業務に活用するための準備として、ChatGPTへの上手な質問 (プロンプト構文) の出し方を演習を踏まえて解説いたします。
本セミナーは、新材料設計、材料製造プロセスの効率化、画像による材料検査の自動化を目指す技術者や研究者にとって、業務の質を向上させ、競争力を高めるための知識とスキルを提供いたします。
本セミナーでは、材料開発加速化のための計算科学技術の重要性、マテリアルズ・インフォマティクスの活用による効果、必要なマテリアルズ・インフォマティクスの要素技術について解説いたします。
本セミナーでは、製造プロセスをデータ駆動で最適化するプロセスインフォマティクスの理念と応用を体系的に解説いたします。
本セミナーでは、データ分析に生成AIを応用する方法について、データ分析および生成AIの基礎から具体的なテクニックをわかりやすく解説いたします。
本セミナーでは、感性価値に関する理解を高めることを目指し、感性定量化の方法やビジネスにおける活用事例などを分かりやすく解説いたします。
また、感性評価分野において、AIが果たす役割が大きくなっていることから、AI活用のメリットや留意点についても解説いたします。
本セミナーでは、材料開発加速化のための計算科学技術の重要性、マテリアルズ・インフォマティクスの活用による効果、必要なマテリアルズ・インフォマティクスの要素技術について解説いたします。
本セミナーでは、製造プロセスをデータ駆動で最適化するプロセスインフォマティクスの理念と応用を体系的に解説いたします。
本セミナーは、実際の現場で役に立つ、専門知識が少ない方でも理解できるよう、データ分析の基礎から応用まで、原理から具体的な手法までを平易に解説いたします。
本セミナーは、実際の現場で役に立つ、専門知識が少ない方でも理解できるよう、データ分析の基礎から応用まで、原理から具体的な手法までを平易に解説いたします。
本セミナーでは、機械学習の適切・効果的な利用方法、代替モデル構築のためのデータに対する考え方、データ取得のための実験計画の立て方、ポイントについて詳解いたします。
本セミナーでは、外観検査システムの基礎から画像処理、機械学習、ディープラーニングと順を追って作成に必要な技術について解説いたします。
本セミナーでは、ケモインフォマティクスについて基礎から解説し、化合物の特性を予測・説明する回帰モデル、特性の予測方法、ベイズ最適化を用いた実験条件の探索方法の解説いたします。
本セミナーでは、Pythonの基礎から解説し、ChatGPTを業務に活用するための準備として、ChatGPTへの上手な質問 (プロンプト構文) の出し方を演習を踏まえて解説いたします。
本セミナーでは、「感性・感情・印象」の評価・定量化・モデル化について研究事例を紹介しながら、技術としての展開の可能性を議論いたします。
さらに、生体計測による心理状態の推定の可能性と応用についても議論いたします。
本セミナーでは、「感性・感情・印象」の評価・定量化・モデル化について研究事例を紹介しながら、技術としての展開の可能性を議論いたします。
さらに、生体計測による心理状態の推定の可能性と応用についても議論いたします。
本セミナーでは、ケモインフォマティクスについて基礎から解説し、化合物の特性を予測・説明する回帰モデル、特性の予測方法、ベイズ最適化を用いた実験条件の探索方法の解説いたします。
本セミナーでは、研究開発の高精度化・高効率化を実現するデータ駆動型アプローチ・機械学習・実験計画について詳しく解説いたします。
機械学習による実験計画の考え方から、ベイズ最適化・能動学習の基礎、機械学習モデルの超パラメータ最適化・品質領域の推定・プロセス条件の最適化などの材料工学への各応用例、Pythonによる実行方法までを解説いたします。
本セミナーでは、MIの教科書として執筆した著書「マテリアルズ・インフォマティクス実践ハンドブック」を題材とした座学 (MIを現場で進める上での考え方や知識など) とハンズオン (AIフレンドリーなデータへの整形や各タスクにおけるPythonコードの実行など) を扱います。
本セミナーでは、スモールデータの解析の実態と、その方法論、データ収集の考え方を、実例を通じて解説いたします。
本セミナーでは、ケモインフォマティクスについて基礎から解説し、化合物の特性を予測・説明する回帰モデル、特性の予測方法、ベイズ最適化を用いた実験条件の探索方法の解説いたします。
本セミナーでは、スモールデータの解析の実態と、その方法論、データ収集の考え方を、実例を通じて解説いたします。
本セミナーは、時系列データの前処理、多変量を含めた時系列データからの特徴抽出、これらの解析手法に加え、機械学習を活用した予測モデルの適用について、Pythonを使用した解析の演習を交えて解説いたします。