技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、機械学習プログラミングの基本について、具体的なPythonプログラムの事例を通して紹介いたします。
また、Google Colaboratoryを利用して、お手元のコンピュータ上でPythonプログラムを動作させることで、 プログラミング実習を体験いただきます。
本セミナーでは、検査と品質保証の概要から、目視検査と自動検査の違い、検査結果の効果的活用法、さらには外観検査に使われている機材と利用ノウハウについて分かりやすく解説いたします。
本セミナーでは、コミュニケーション中に人が表出する言語・非言語マルチモーダル情報 (言語・音声・視線・姿勢・ジェスチャ・生体情報など) を統合的に処理することによって、その人の行動や感情、態度、個性といった内面状態を推定する技術に関して解説いたします。
本セミナーでは、「スリープテック」で注目を集める睡眠について取り上げ、睡眠のメカニズム、睡眠状態の測定と質の評価について事例を交えて詳解いたします。
本セミナーでは、テラヘルツ波の基礎知識から始まり、電子デバイス/光デバイスの両面から光源・検出器の基本について、また、センシング・イメージングシステムを組む上での必要知識を解説いたします。さらにテラヘルツ波のシステムの早期導入が期待される安全安心分野、医療医薬分野に応用する研究開発事例を中心に紹介し、新規産業に展開するためのキーポイントを解説いたします。
本セミナーでは、ORB-SLAMを実例とした処理手順、高精度化のポイントや、ディープラーニング応用、IMUを用いたvisual inertial SLAMなどのvSLAMの現在と、Dead Reckoning (DR) や無線を用いた屋内測位技術などを解説いたします。
本セミナーでは、Transformerの典型的モデルの仕組みから、自然言語処理、画像処理、音声認識に応用した最新モデルまでを解説いたします。
本セミナーでは、デプス・センシング・アルゴリズムの基礎から、それを用いた非接触生体センシングの動作原理、ヒューマン・ヘルスケア関連アプリケーションへの展開について、次世代デバイスHololensのデモを交えて解説いたします。
本セミナーでは、ディジタル信号処理の基礎から、音の特徴量の求め方までを平易に解説いたします。
また、故障検知への利用および故障予知への発展の方法へのアプローチを紹介いたします。
本セミナーでは、最初に画像の前処理・特徴量抽出手法について紹介した後、機械学習や深層学習による画像認識システムについて、プログラミング言語Pythonによるプログラム例とともに紹介いたします。
また、画像認識システムのサンプルプログラムを紹介するとともに、システム構築にあたっての注意点について解説いたします。
本セミナーでは、脳波の基礎からBrainTechに繋がる応用研究まで解説いたします。
本セミナーでは、自律走行や拡張現実感 (AR) などの基盤技術として用いられるVisual SLAMについて、基礎から実装法まで解説いたします。
3次元的な自己位置推定・マッピング処理を対象としたコンピュータビジョン技術を初歩から概説いたします。
カメラの投影モデルや特徴点トラッキングなどの基礎技術から、古くから研究がなされてきたオフライン型structure from motion (SfM) 、 Hololens、ARCore、ARKitなどにも用いられるオンライン型visual SLAMの枠組みに至るまでを理解できることを目的とします。
本セミナーでは、現在の自動運転自動車のセンシングに欠かせないセンサとなっているLiDARを一例として取り上げ、自動運転自動車周囲に存在している移動物体の運動推定手法を題材とした状態推定アルゴリズムの解説を行います。
また、金沢大学の実装例を交えて解その他の自動運転全般の技術の概要についても解説いたします。
本セミナーでは、機械学習の成果を左右する「データ前処理」について取り上げ、その基本から、高度な前処理、自然言語・画像・音声におけるすぐに使える前処理技術、うまく対処できない時のための最新技術の調べ方のコツなどについて、PCを用いた演習を含めて実践的な内容を解説いたします。
本セミナーでは、ヒトが高級感を感じるメカニズムについて基礎から解説し、官能評価・機器測定のポイント、データの読み方、解釈の仕方について詳解いたします。
本セミナーでは、中小製造現場でいくつかの導入実績をあげた講師が手がけたAI外観検査の取り組みを紹介いたします。
活動事例を通じて得られた、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までの知見を解説いたします。
本セミナーでは、3次元空間情報に関するデータ形式の1つである3次元点群を効率良く処理し、それを活用する情報処理の基本技法について、実例を挙げながら具体的に解説いたします。
本セミナーでは、実環境での雑音の種類から話をスタートし、ディジタル信号処理において、それぞれの雑音に対して、どのような対処策があるかを詳細に説明いたします。
具体的なアルゴリズムを提示し、結果を確認しながら解説しますが、雑音の性質に応じた各種フィルタリング技術から、時変性がある従来対処困難とされていた雑音に対しても有効に働く、フレーム内処理方法やディープニューラルネットワークの利用までをカバーします。
最先端のWave-U-Netやその改善方法なども説明いたします。
本セミナーでは、画像認識問題を題材として、まず軽量化の観点からディープラーニングの基礎を説明した後、様々な軽量化技術のテクニックを紹介いたします。
各テクニックに関しては、AI系の有力国際会議 (CVPR、ICLRなど) やプレプリントサーバ (ArXiv) に掲載されている最新技術を主に扱い、理論的な厳密さよりもイメージやコンセプト重視でわかりやすくご説明いたします。
本セミナーでは、初めての方でも安心してご受講いただけるようPythonの基礎から解説し、機械学習における教師あり学習 (分類問題と回帰問題) および教師なし学習 (次元圧縮およびクラスター解析) についてExcelおよびPythonを使ってわかりやすく解説します。
本セミナーでは、GNSSデータとIMUセンサやSPEEDセンサとのの統合手法についてできるだけ平易に紹介いたします。
GNSSはトンネル内や高層ビルが密集した場所や、高架下では残念ながら機能しません。その意味でIMUやSPEEDセンサとのカップリングは非常に相性がよいと考えられます。
本セミナーでは、畳み込みニューラルネットワークの基礎と画像認識分野における応用事例について説明いたします。
また、畳み込みニューラルネットワークの判断根拠の視覚的説明や応用方法、実装に向けた環境やディープラーニングフレームワークについても紹介し、実践的に活用できる内容を網羅的に説明いたします。