技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

小規模データに対する機械学習の効果的適用法

小規模データに対する機械学習の効果的適用法

オンライン 開催

開催日

  • 2022年2月24日(木) 10時30分 16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者
  • 機械学習で課題を抱えている方

修得知識

  • 人工知能 (AI) ・機械学習の現状と課題
  • 深層学習 (ディープラーニング) の原理と課題
  • 少数データを用いた人工知能の手法
  • 業務へのAI導入の秘訣

プログラム

 いま、人工知能、特に機械学習が注目され、様々な分野や企業の業務への導入が検討されています。最近注目されている機械学習法である深層学習 (ディープラーニング) は、非常に高精度な分類や推定を行なえる反面、学習に膨大な数のデータと時間を必要とします。しかしながら、実際の業務や現場では、大量の学習用データがなかったり、集めるのが非常に大変なために、少ない学習データしかないことがよくあります。このため、深層学習を適用できず、AI導入を躊躇している企業も多いです。
 本セミナーは、少ない学習データを基にして有効な学習を行う機械学習の方法を紹介することを目的としています。数式はできるだけ使わず、考え方や原理、要点が分り易く伝わるような平易な説明を心掛けますので、人工知能や機械学習に対して予備知識がない方や、技術職ではない方もぜひご参加下さい。後半では、AIを業務に導入する際の注意点や成功させるためのコツなどについても扱いますので、企業経営者の方もぜひ受講して頂けると幸いです。

  1. 機械学習の現状と課題
    1. 人工知能と機械学習
    2. 機械学習の種類と方法
    3. 教師あり/なし/半教師あり学習
    4. 深層学習 (ディープラーニング) 概論
    5. 少量データを用いた機械学習とは?
  2. 少量データを用いた機械学習1:関数推定
    1. ベイズ最適化に基づく関数推定
    2. 遺伝的プログラミング (GP) による関数推定
    3. CGP による関数推定
  3. 少量データを用いた機械学習2:異常検知
    1. 1クラス SVM
    2. CAE による異常検知
    3. 異常検知における学習データの水増し
  4. 少量データを用いた機械学習3:少量データによる深層学習
    1. CG(Computer Graphics) を用いた機械学習
    2. GAN による水増し
    3. 転移学習と蒸留・浸透学習 (Percolative Learning)
  5. 少量データを用いた機械学習4:進化的機械学習
    1. 進化計算法の原理と特徴
    2. 処理プロセスの自動生成
    3. 分かり易い分類器の自動生成
    4. CS(Classifier System) によるルールの学習
  6. AIの業務への導入方法
    1. AI導入時の注意点
    2. AI人材の育成方法について
  7. まとめ

講師

  • 長尾 智晴
    横浜国立大学 大学院 環境情報学府・研究院 情報メディア環境学専攻
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 51,700円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2022/5/24 ディープニューラルネットワークモデルとMTシステムで学ぶ製造業における 「人工知能」の基礎および学習データ最小化ノウハウと「自動設計・仮想検査・未知の異常検知」への応用入門 オンライン
2022/5/24 AI/デジタルヘルスにおける特許戦略で考慮すべき事項と最新動向 オンライン
2022/5/25 距離画像センサの測距原理と3Dセンサの応用 会場
2022/5/26 グラフニューラルネットワーク入門 オンライン
2022/5/30 テラヘルツ波の基礎と産業への応用 オンライン
2022/5/30 知っておきたい機械学習を用いたデータ分析の正しい進め方 オンライン
2022/6/1 画像の品質 (画質) を高精度に評価する方法のノウハウ オンライン
2022/6/3 ディープラーニングによる異常検知の基礎と実用化のポイント オンライン
2022/6/3 車載用遠赤外線カメラシステムの効果と課題、及び遠赤外線カメラの将来性について オンライン
2022/6/6 インフォマティクス・機械学習活用のための多変量解析 超入門 オンライン
2022/6/7 新世代CMOSイメージング、センシングそしてビジョンコンピューティング オンライン
2022/6/9 説明可能AI (XAI:explainable AI) の作り方とAIの業務への導入方法 オンライン
2022/6/10 最新動画像符号化方式 VVC (Versatile Video Coding) 概要 オンライン
2022/6/13 機械学習によるデータ分析の正しい進め方とビジネスへの適用 オンライン
2022/6/14 スパースモデリングの基礎とマテリアルズインフォマティクスによる材料開発への展開 オンライン
2022/6/14 AIを活用した革新的実験計画法の上手な活用法 オンライン
2022/6/15 時系列データ分析の基礎と実践 オンライン
2022/6/16 人工知能を使ったR&D・新規事業テーマの探索 オンライン
2022/6/17 Transformerの応用と最新技術動向 オンライン
2022/6/17 スパースモデリングの基礎とマテリアルズインフォマティクスによる材料開発への展開 オンライン

関連する出版物

発行年月
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2016/1/20 画像ワーピング技術とその応用
2015/8/17 防犯・監視カメラ〔2015年版〕 技術開発実態分析調査報告書 (CD-ROM版)
2015/8/17 防犯・監視カメラ〔2015年版〕 技術開発実態分析調査報告書
2014/3/7 画像処理・画像符号化・画像評価法
2013/10/29 高効率動画像符号化方式:H.265/HEVC (High Efficiency Video Coding)
2013/8/2 HLAC特徴を用いた学習型汎用認識
2013/6/21 機械学習によるパターン識別と画像認識への応用