技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、Transformerの典型的モデルの仕組みから、自然言語処理、画像処理、音声認識に応用した最新モデルまでを解説いたします。
本セミナーでは、統計手法選択・サンプルサイズの決定について根拠として説明出来るようにわかりやすく解説いたします。
本セミナーでは、実環境での雑音の種類から話をスタートし、ディジタル信号処理において、それぞれの雑音に対して、どのような対処策があるかを詳細に説明いたします。
具体的なアルゴリズムを提示し、結果を確認しながら解説しますが、雑音の性質に応じた各種フィルタリング技術から、時変性がある従来対処困難とされていた雑音に対しても有効に働く、フレーム内処理方法やディープニューラルネットワークの利用までをカバーします。
最先端のWave-U-Netやその改善方法なども説明いたします。
本セミナーでは、統計の基礎から解説し、問題解決手法としてデータサイエンスを導入する時の勘所について事例を中心に解説いたします。
本セミナーでは、ベイズ統計学について基礎からわかりやすく解説し、一般的な統計学との違い、ベイズ統計学の使いどころがわかる事例も紹介いたします。
本セミナーでは、「感性・感情・印象」の評価・定量化・モデル化について研究事例を紹介しながら、技術としての展開の可能性を議論いたします。
さらに、生体計測による心理状態の推定の可能性と応用についても議論いたします。
本セミナーでは、確率の基本からベイズモデリングの最前線までを単純なデータを使った実演や具体的な応用事例紹介を通じて、ベイズモデリングに基づく機械学習の全体像を理解することができます。
本セミナーでは、統計手法選択・サンプルサイズの決定について根拠として説明出来るようにわかりやすく解説いたします。
本セミナーでは、光学系を用いた画像の撮影に関する技術から、画像認識技術の概要、一般的な画像認識処理フロー、評価方法、ディープラーニングの基礎、様々な画像認識アルゴリズム、また外観検査などへの応用に関して解説いたします。
本セミナーでは、現在の自動運転自動車のセンシングに欠かせないセンサとなっているLiDARを一例として取り上げ、自動運転自動車周囲に存在している移動物体の運動推定手法を題材とした状態推定アルゴリズムの解説を行います。
また、金沢大学の実装例を交えて解その他の自動運転全般の技術の概要についても解説いたします。
本セミナーでは、製品におけるキズ・欠陥、形材の地合、複雑な立体形状の陰影に紛れた不明瞭な欠陥像を検出するために画像処理、機械学習を利用した目視・外観検査自動化の実例を解説いたします。
本セミナーでは、グラフニューラルネットワークの基本的な知識およびいくつかの研究事例について紹介するとともに、今後の学習のための情報源などについても解説いたします。
本セミナーでは、自社の課題に有効な手法を選択・活用できるようになることを主眼に、異常診断技術の本質や考え方、異常診断に活用される機械学習手法とMTシステムの基礎と応用、異常診断技術の適用事例などを解説いたします。
本セミナーでは、データ分析の正しいやり方・手順を学び、自分自身で正しくデータ分析を行えるようになること、データ分析結果を正しく評価できるようになることを目指します。
本セミナーでは、AIを利用したビジネスモデルや製品開発予定の方の視点に立ち、AI関連発明の着眼点や留意点について分かりやすく解説いたします。
また、AIに関わる特許出願動向、係争事例と共同・委託開発における知財の取り決め、契約の実務について詳解いたします。
本セミナーでは、機械学習の入門的コンテンツ、材料研究におけるデータ科学の活用事例、解析ツール等の紹介を行いながら、マテリアルズインフォマティクスの全体像を示します。
また、物質構造記述子、構造物性相関解析、材料設計、実験計画法、転移学習によるスモールデータ解析、ディープラーニング等の話題を中心に講義を行います。
本セミナーでは、機械学習モデルを対象としたテスト技術や、機械学習を活用したシステムに対する品質保証の枠組みやガイドラインに関して、近年議論されている話題を俯瞰的に概説いたします。
本セミナーでは、予防安全技術の歴史やロードマップを基にして、ドライバ状態検出技術の最新研究開発動向および将来の展望について詳細に解説いたします。
また、ドライバ状態を検出するに当たって活用が期待される統計科学的手法、機械学習の手法について解説いたします。
本セミナーでは、化合物構造をコンピュータ上で扱うために、ケモインフォマティクスの基礎である「化合物の表記方法、分子フィンガープリント、分子記述子」について、Pythonのケモインフォマティクス用ライブラリーであるRDKitを用いて解説いたします。