技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、アカデミックな内容は最小化し、製造業の実務で使う各種データ分析の実践的な方法を中心に講義いたします。
また、無味乾燥な数式の解説ではなく、具体的な事例を通して、データ分析の基礎と手順を解説いたします。
本セミナーでは、アカデミックな内容は最小化し、製造業の実務で使う各種データ分析の実践的な方法を中心に講義いたします。
また、無味乾燥な数式の解説ではなく、具体的な事例を通して、データ分析の基礎と手順を解説いたします。
本セミナーでは、スモールデータの解析の実態と、その方法論、データ収集の考え方を、実例を通じて解説いたします。
本セミナーでは、スモールデータの解析の実態と、その方法論、データ収集の考え方を、実例を通じて解説いたします。
本セミナーでは、官能評価について基礎から解説し、官能評価の手法の中からQDA法、SD法、CATA法を取り上げ、その内容を解説いたします。
また、得られたデータの解析法について、サンプルデータを用いて解説し、触感を伴う官能評価データの化粧品・医薬部外品などの商品開発への活用法について考察いたします。
本セミナーでは、官能評価について基礎から解説し、官能評価の手法の中からQDA法、SD法、CATA法を取り上げ、その内容を解説いたします。
また、得られたデータの解析法について、サンプルデータを用いて解説し、触感を伴う官能評価データの化粧品・医薬部外品などの商品開発への活用法について考察いたします。
本セミナーでは、複数の変数を合成した合成変数を構成することで情報縮約を行う主成分分析と、観測されていない変数である潜在変数を抽出する因子分析にスポットを当て、多変量解析に入口を立ち、そこから先へ自ら進んでいくための第一歩を踏み出す手助けをすることを目的とします。
本セミナーでは、エモーショナルデザインを取り上げ、エモーショナルデザインの基礎から解説し、商品の形・色・素材におけるエモーションデザインの要素、デザイン工程から客観的な評価方法まで解説いたします。
本セミナーでは、複数の変数を合成した合成変数を構成することで情報縮約を行う主成分分析と、観測されていない変数である潜在変数を抽出する因子分析にスポットを当て、多変量解析に入口を立ち、そこから先へ自ら進んでいくための第一歩を踏み出す手助けをすることを目的とします。
本セミナーでは、実務で使えるデータ分析手法、統計解析の危うさとグラフによる目視確認の重要性、成果が出やすい手法、重回帰分析、主成分分析、クラスター分析、因子分析などについて、実務経験豊富な講師が、実践的に分かりやすく解説いたします。
本セミナーでは、実験計画法の基礎として原理と問題点から解説し、実験計画法の問題点を補うためにディープラーニングを併用した、製造業の開発により適した非線形実験計画法を解説いたします。
本セミナーでは、実験計画法の基礎として原理と問題点から解説し、実験計画法の問題点を補うためにディープラーニングを併用した、製造業の開発により適した非線形実験計画法を解説いたします。
本セミナーでは、質量測定を基盤としたプロテオーム分析実験の原理やノウハウについて、データ解析の実例も織り交ぜながら、分析の一連の流れを把握していただけるように解説いたします。
本セミナーでは、質量測定を基盤としたプロテオーム分析実験の原理やノウハウについて、データ解析の実例も織り交ぜながら、分析の一連の流れを把握していただけるように解説いたします。
本セミナーでは、Microsoft Excelを利用し、データ・リテラシーとして必要なデータの理解から分析までを、演習を交えて、操作や出力結果の見方を含めて解説いたします。
本セミナーは、Google Colabを使用して、PyCaretを利用した異常検知プログラムを動かすハンズオンセッションを行います。
本セミナーでは、データの可視化、モデルの予測性能向上、モデルの逆解析を特に重点的に解説いたします。
また、分子設計・材料設計・プロセス設計・プロセス管理に関する最新の研究事例を紹介いたします。
ケモインフォマティクス・プロセスインフォマティクスにも役立つ内容となっております。
本セミナーでは、線形回帰、Lasso、多変量解析、データサイエンスへの応用技術を解説いたします。
本セミナーでは、Pythonプログラミングの基礎、統計解析の基礎、Pythonを使った統計解析手法について、わかりやすく解説いたします。
本セミナーでは、多変量解析について基礎から解説し、重回帰分析、主成分分析、分散分析 (ANOVA) 、クラスター分析など代表的な手法について解説いたします。
ご自身が関わっている業務や研究課題について、どのような手法を適用していくべきか、そのためにどんな準備が必要かについて、ヒントが得られることと思います。
本セミナーでは、多変量解析について基礎から解説し、重回帰分析、主成分分析、分散分析 (ANOVA) 、クラスター分析など代表的な手法について解説いたします。
ご自身が関わっている業務や研究課題について、どのような手法を適用していくべきか、そのためにどんな準備が必要かについて、ヒントが得られることと思います。
本セミナーでは、多変量解析・データ処理の基礎から解説し、特徴抽出や次元削減、データ前処理、相関とパターンの発見など、解析の手順を事例を交えて、分かりやすく解説いたします。
本セミナーでは、Microsoft Excelを利用し、データ・リテラシーとして必要なデータの理解から分析までを、演習を交えて、操作や出力結果の見方を含めて解説いたします。
本セミナーでは、データ解析手法の基礎から解説し、データ解析手法を使用するデータ前処理、および注意すべきこと (弱点)を解説いたします。
また、応用編では、産業応用事例を紹介しながら、実際に現場で役立つデータ活用術を解説いたします。
本セミナーでは、多変量解析について基礎から解説し、重回帰分析、主成分分析、分散分析 (ANOVA) 、クラスター分析など代表的な手法について解説いたします。
ご自身が関わっている業務や研究課題について、どのような手法を適用していくべきか、そのためにどんな準備が必要かについて、ヒントが得られることと思います。
本セミナーでは、簡単に操作できる「Rコマンダー」の実演を交えながら、多変量解析の進め方、および不具合解析、素材の特性予測、製品の分類等における使い分けについて分かりやすく解説いたします。