技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、多変量解析について基礎から解説し、重回帰分析、主成分分析、分散分析 (ANOVA) 、クラスター分析など代表的な手法について解説いたします。
ご自身が関わっている業務や研究課題について、どのような手法を適用していくべきか、そのためにどんな準備が必要かについて、ヒントが得られることと思います。
本セミナーでは、多変量解析について基礎から解説し、重回帰分析、主成分分析、分散分析 (ANOVA) 、クラスター分析など代表的な手法について解説いたします。
ご自身が関わっている業務や研究課題について、どのような手法を適用していくべきか、そのためにどんな準備が必要かについて、ヒントが得られることと思います。
本セミナーでは、多変量解析・データ処理の基礎から解説し、特徴抽出や次元削減、データ前処理、相関とパターンの発見など、解析の手順を事例を交えて、分かりやすく解説いたします。
本セミナーでは、Microsoft Excelを利用し、データ・リテラシーとして必要なデータの理解から分析までを、演習を交えて、操作や出力結果の見方を含めて解説いたします。
本セミナーでは、データ解析手法の基礎から解説し、データ解析手法を使用するデータ前処理、および注意すべきこと (弱点)を解説いたします。
また、応用編では、産業応用事例を紹介しながら、実際に現場で役立つデータ活用術を解説いたします。
本セミナーでは、多変量解析について基礎から解説し、重回帰分析、主成分分析、分散分析 (ANOVA) 、クラスター分析など代表的な手法について解説いたします。
ご自身が関わっている業務や研究課題について、どのような手法を適用していくべきか、そのためにどんな準備が必要かについて、ヒントが得られることと思います。
本セミナーでは、簡単に操作できる「Rコマンダー」の実演を交えながら、多変量解析の進め方、および不具合解析、素材の特性予測、製品の分類等における使い分けについて分かりやすく解説いたします。
本セミナーでは、データ解析について取り上げ、Excelを活用した多変量解析の基本からニューラルネットワーク非線形解析 、逆問題解析について解説いたします。
また、製造業における「分析モデルに基づくスモールデータの取り扱い方と活用事例」「Excelをベースとするプログラミング不要な分析モデル開発環境の利用方法」について、デモを交えて実践的な知識と理解を深めていただきます。
本セミナーでは、多変量解析について基礎から解説し、重回帰分析、主成分分析、分散分析 (ANOVA) 、クラスター分析など代表的な手法について解説いたします。
ご自身が関わっている業務や研究課題について、どのような手法を適用していくべきか、そのためにどんな準備が必要かについて、ヒントが得られることと思います。
本セミナーは、Google Colabを使用して、PyCaretを利用した異常検知プログラムを動かすハンズオンセッションを行います。
本セミナーでは、データ解析について取り上げ、Excelを活用した多変量解析の基本からニューラルネットワーク非線形解析 、逆問題解析について解説いたします。
また、製造業における「分析モデルに基づくスモールデータの取り扱い方と活用事例」「Excelをベースとするプログラミング不要な分析モデル開発環境の利用方法」について、デモを交えて実践的な知識と理解を深めていただきます。
本セミナーでは、スモールデータの解析の実態と、その方法論、データ収集の考え方を、実例を通じて解説いたします。
本セミナーでは、スモールデータの解析の実態と、その方法論、データ収集の考え方を、実例を通じて解説いたします。
本セミナーでは、エモーショナルデザインを取り上げ、エモーショナルデザインの基礎から解説し、商品の形・色・素材におけるエモーションデザインの要素、デザイン工程から客観的な評価方法まで解説いたします。
本セミナーでは、Pythonの基礎から解説し、機械学習における教師あり学習 (分類問題と回帰問題) および教師なし学習 (次元圧縮およびクラスター解析) 、医薬品開発への応用について詳解いたします。
本セミナーでは、データインフォマティクスの基礎を学び、データインフォマティクスを使うことで、難しいとされる赤外・近赤外分光法のスペクトルデータを解釈する手段について解説いたします。
本セミナーでは、Pythonの基礎から解説し、機械学習における教師あり学習 (分類問題と回帰問題) および教師なし学習 (次元圧縮およびクラスター解析) 、医薬品開発への応用について詳解いたします。
本セミナーでは、感性工学の基礎から解説し、評価実験、分析方法についてハンズオンを交えて解説いたします。