技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

スモールデータ解析の方法と実問題解決への応用

スモールデータ解析の方法と実問題解決への応用

~スモールデータの解析の実態とその方法論、データ収集の考え方~
オンライン 開催

アーカイブ配信で受講をご希望の場合、視聴期間は2025年8月1日〜15日を予定しております。
アーカイブ配信のお申し込みは2025年8月13日まで承ります。

概要

本セミナーでは、スモールデータの解析の実態と、その方法論、データ収集の考え方を、実例を通じて解説いたします。

配信期間

  • 2025年8月1日(金) 10時30分2025年8月15日(金) 16時30分

お申し込みの締切日

  • 2025年8月13日(水) 16時30分

受講対象者

  • 現実のデータの解析に関心のある技術者・研究者
  • 少量のデータから統計モデルを構築したいと考えている方
  • 現場でのデータ解析に従事する方
  • 現場におけるデータ収集についてお困りの方

修得知識

  • 機械学習の基礎知識
  • 入力変数選択・異常検知手法などスモールデータに適したデータ解析手法
  • スモールデータにおけるデータ収集の心構え

プログラム

 生産現場の操業データや医療データにおいては、測定されている変数の数と比較して統計モデリングに使用可能なデータ量が限られることが多い。通常のモデリングでは正例・負例双方のサンプルが必要となるが、装置故障など稀な事象のデータはなかなか収集が困難であり、医療データにおいては、倫理的な問題から多くの患者から臨床データを収集するのは大きな壁が存在する。このように実世界ではしばしば必要なデータが十分に収集できず、スモールなデータからいかに知識を抽出するのかが重要となる。
 本セミナーでは、実例を通じ、スモールデータの解析の実態と、その方法論、データ収集の考え方を講義する。

  1. スモールデータとは?
    1. スモールデータの特徴
    2. スモールデータ解析の現状
  2. スモールデータ解析の方法論:次元削減と回帰分析
    1. 主成分分析 (PCA)
      1. PCAとは
      2. 直交展開
      3. PCAの導出
      4. PCAと特異値分解
    2. 最小二乗法
      1. 回帰分析とは
      2. 相関係数の意味
      3. 最小二乗法の導出
      4. 最小二乗法の幾何学的意味
      5. 多重共線性の問題
    3. 部分的最小二乗法 (PLS)
      1. PLSとは
      2. 潜在変数モデル
      3. PLSモデルの導出
      4. NIPALSアルゴリズム
      5. PLSから重回帰モデルへの変換
      6. クロスバリデーションによるパラメータチューニング
  3. スモールデータ解析の方法論:入力変数選択
    1. 入力変数選択とは
    2. スパースモデリング
      1. スパースとは
      2. リッジ回帰
      3. Lasso回帰
      4. エラスティックネットモデル
      5. Group Lasso
    3. 変数クラスタリングによる入力変数選択
      1. スペクトラルクラスタリング
      2. NC法のコンセプト
      3. NCSCアルゴリズムの導出
      4. NCSCを用いた変数クラスタリングと入力変数選択
      5. 製薬プロセスへの応用例
  4. スモールデータ解析の方法論:不均衡データ解析
    1. サンプリング手法
      1. サンプリング手法とは
      2. アンダーサンプリングとオーバーサンプリング
    2. ブースティング
      1. ブースティングとは
      2. AdaBoost
      3. RandomForest
    3. ブースティングとサンプリング手法を組み合わせた不均衡データ解析
      1. 何故、ブースティングとサンプリング手法を組み合わせるか
      2. RUSBoost
      3. HUSDOS-Boost
    4. 不均衡データ解析の大規模検診データへの適用例
  5. スモールデータ解析の方法論:異常検出
    1. 異常検出とは
    2. 多変量統計的プロセス管理 (MSPC)
      1. MPSCとは
      2. T2統計量とQ統計量の幾何学的意味
    3. 自己符号化器 (オートエンコーダー)
    4. 異常検出問題の医療データ解析への応用例
  6. スモールデータの収集・解析の考え方
    1. 必要となるデータの質の問題
    2. データ収集の際の留意点
    3. スモールデータ解析の手法選択

講師

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 25,000円 (税別) / 27,500円 (税込) (案内をご希望の場合に限ります)

案内割引・複数名同時申込割引について

R&D支援センターからの案内登録をご希望の方は、割引特典を受けられます。
案内および割引をご希望される方は、お申込みの際、「案内の希望 (割引適用)」の欄から案内方法をご選択ください。

「案内の希望」をご選択いただいた場合、1名様 45,000円(税別) / 49,500円(税込) で受講いただけます。
複数名で同時に申込いただいた場合、1名様につき 25,000円(税別) / 27,500円(税込) で受講いただけます。

  • R&D支援センターからの案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 45,000円(税別) / 49,500円(税込)
    • 2名様でお申し込みの場合 : 2名で 50,000円(税別) / 55,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 75,000円(税別) / 82,500円(税込)
  • R&D支援センターからの案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 55,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 100,000円(税別) / 110,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 150,000円(税別) / 165,000円(税込)

アーカイブ配信セミナー

  • 当日のセミナーを、後日にお手元のPCやスマホ・タブレッドなどからご視聴・学習することができます。
  • 配信開始となりましたら、改めてメールでご案内いたします。
  • 視聴サイトにログインしていただき、ご視聴いただきます。
  • 視聴期間は2025年8月1日〜15日を予定しております。
    ご視聴いただけなかった場合でも期間延長いたしませんのでご注意ください。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/6/3 カルマンフィルタの実践 オンライン
2025/6/3 Pythonによるデータ解析の基礎と実務への応用 オンライン
2025/6/4 マテリアルズインフォマティクスのためのデータ解析 オンライン
2025/6/6 時系列データ分析の基礎と実務への応用 オンライン
2025/6/6 AI利活用におけるEU AI法の影響と今後の課題 オンライン
2025/6/9 現場で使えるマテリアルズ・インフォマティクス実践講座 オンライン
2025/6/9 時系列データによる将来予測、異常検知への応用 オンライン
2025/6/9 時系列データ分析の基礎と実務への応用 オンライン
2025/6/10 現場で使えるマテリアルズ・インフォマティクス実践講座 オンライン
2025/6/12 Pythonを活用したデータ分析手法 オンライン
2025/6/12 小規模データに対する機械学習の効果的適用法 オンライン
2025/6/13 マテリアルズインフォマティクスのためのデータ解析 オンライン
2025/6/13 Pythonを活用したデータ分析手法 オンライン
2025/6/13 小規模データに対する機械学習の効果的適用法 オンライン
2025/6/13 計測インフォマティクスの基礎とスペクトルデータ解析への応用 オンライン
2025/6/13 AI利活用におけるEU AI法の影響と今後の課題 オンライン
2025/6/16 計測インフォマティクスの基礎とスペクトルデータ解析への応用 オンライン
2025/6/17 衛星データを活用した宇宙ビジネスへの参入とその進め方 オンライン
2025/6/18 機械学習のための少数データ、データ不足への対応と解釈・評価方法 オンライン
2025/6/18 外観検査自動化に向けた画像処理・AI技術活用の課題と導入のポイント オンライン