技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、回帰分析 (重回帰分析) の基礎から、データの扱い方、Excelを使った回帰分析の実践について解説いたします。
本セミナーでは、初めての方でも安心してご受講いただけるようPythonの基礎から解説し、機械学習における教師あり学習 (分類問題と回帰問題) および教師なし学習 (次元圧縮およびクラスター解析) についてExcelおよびPythonを使ってわかりやすく解説します。
本セミナーでは、統計の基礎から解説し、問題解決手法としてデータサイエンスを導入する時の勘所について事例を中心に解説いたします。
本セミナーでは、初めての方でも安心してご受講いただけるようPythonの基礎から解説し、機械学習における教師あり学習 (分類問題と回帰問題) および教師なし学習 (次元圧縮およびクラスター解析) についてExcelおよびPythonを使ってわかりやすく解説します。
本セミナーでは、研究開発の高精度化・高効率化を実現するデータ駆動型アプローチ・機械学習・実験計画について詳しく解説いたします。
機械学習による実験計画の考え方から、ベイズ最適化・能動学習の基礎、機械学習モデルの超パラメータ最適化・品質領域の推定・プロセス条件の最適化などの材料工学への各応用例、Pythonによる実行方法までを解説いたします。
本セミナーでは、おもに統計における正則化線形回帰という視点からスパースモデリングを概観し、多数提案されている主要な発展的手法も解説いたします。
さらに、具体的な問題をスパースモデリングにより定式化して効率的に解決する事例を、簡単なプログラム例とデモを交えて紹介いたします。
本セミナーでは、初めての方でも安心してご受講いただけるようPythonの基礎から解説し、機械学習における教師あり学習 (分類問題と回帰問題) および教師なし学習 (次元圧縮およびクラスター解析) についてExcelおよびPythonを使ってわかりやすく解説します。
本セミナーでは、機械学習・ディープラーニングを概観・整理した後、時系列データの分析手法を概観し、実践のポイントを解説いたします。
また、処理の違いにより、結果に対してどの程度の際が生まれるかを実験、説明いたします。
本セミナーでは、過去の技術開発手法に情報科学で用いられるデータ解析手法を取り入れ温故知新により成果の出た講演者の成功事例を公開いたします。
例えば、科学で否定証明された問題を多変量解析で解いて実用化に結びつけた事例や、データ駆動で環境対応樹脂を開発した事例などデータサイエンスによる実験手法を具体的に説明いたします。
本セミナーでは、データの可視化、モデルの予測性能向上、モデルの逆解析を特に重点的に解説いたします。
また、分子設計・材料設計・プロセス設計・プロセス管理に関する最新の研究事例を紹介いたします。
ケモインフォマティクス・プロセスインフォマティクスにも役立つ内容となっております。
本セミナーでは、近年注目されている、グラフニューラルネットワークの基礎と材料・医薬品開発への応用、問題点や有用性の有無について解説いたします。
「データの多様性が少ない」「予測精度よりも解釈性を重視する」等の企業の実情に沿ったデータ分析・機械学習・深層学習の応用とその注意点について講師の経験を踏まえて解説いたします。
本セミナーでは、スモールデータの解析の実態と、その方法論、データ収集の考え方を、実例を通じて解説いたします。
本セミナーでは、製造業の実務で使う各種データ分析の実践的な方法を中心に講義いたします。また、具体的な事例を通してデータ分析の基礎と手順を解説いたします。
そして、統計解析パッケージソフトウェアを使って、実際にデータ分析の演習を行います。