技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、畳み込みニューラルネットワークの基礎と画像認識分野における応用事例について説明いたします。
また、畳み込みニューラルネットワークの判断根拠の視覚的説明や応用方法、実装に向けた環境やディープラーニングフレームワークについても紹介し、実践的に活用できる内容を網羅的に説明いたします。
本セミナーでは、ディープラーニングのモデル軽量化技術の基礎から、各種モデル軽量化技術 (合計22手法) の狙いや仕組みを詳解いたします。
本セミナーでは、深層学習による時系列予測と振動からの異常検知について、基本的な手法と技術動向を解説いたします。
次に、周波数分析、再帰型・畳み込みネットワークによる特徴量化を解説いたします。
さらに、振動による異常検知について機械設備への適用事例を紹介いたします。
本セミナーでは、画像認識問題を題材として、まず軽量化の観点からディープラーニングの基礎を説明した後、様々な軽量化技術のテクニックを紹介いたします。
各テクニックに関しては、AI系の有力国際会議 (CVPR、ICLRなど) やプレプリントサーバ (ArXiv) に掲載されている最新技術を主に扱い、理論的な厳密さよりもイメージやコンセプト重視でわかりやすくご説明いたします。
本セミナーでは、確率の基本からベイズモデリングの最前線までを具体的な応用事例を通じて、ベイズモデリングに基づく機械学習の全体像を理解することができます。
本セミナーでは、機械学習全般に共通する基本的な概念、そして特に要望の多い異常検知の理論や実装方法を分かりやすく解説いたします。
本セミナーでは、様々な分野で使われるようになってきた Transformerについて、基礎となる理論と応用を解説いたします。
本セミナーでは、データの使い方の基礎から、いま人工知能で話題となっているディープラーニングまで、基本的な考え方と手法の原理を解説いたします。
本セミナーでは、CNNのディープラーニングによる顔識別の仕組みや動作、効果的な学習方法、ディープラーニングで実現した最先端の識別性能や更なる精度向上方法などを、多数の顔画像を例示して分かりやすく説明いたします。
本セミナーでは、最初に画像の前処理・特徴量抽出手法について紹介した後、機械学習や深層学習による画像認識システムについて、プログラミング言語Pythonによるプログラム例とともに紹介いたします。
また、画像認識システムのサンプルプログラムを紹介するとともに、システム構築にあたっての注意点について解説いたします。
本セミナーでは、機械学習プログラミングの基本について、具体的なPythonプログラムの事例を通して紹介いたします。
また、Google Colaboratoryを利用して、お手元のコンピュータ上でPythonプログラムを動作させることで、 プログラミング実習を体験いただきます。
本セミナーでは、ディープラーニングで必ずしも学習データ数が多くない場合や異常検知で異常値のデータ数が少ないといった問題点を解決するための戦略について事例を交えながら紹介いたします。
本セミナーでは、ディジタル信号処理の基礎から、音の特徴量の求め方までを平易に解説いたします。
また、故障検知への利用および故障予知への発展の方法へのアプローチを紹介いたします。
本セミナーでは、ディープラーニングとXAIの基礎から解説し、XAIを用いたディープラーニングの精度向上の検討手法、業務課題へのXAIを活用した提案について詳解いたします。
本セミナーでは、中小製造現場でいくつかの導入実績をあげた講師が手がけたAI外観検査の取り組みを紹介いたします。
活動事例を通じて得られた、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までの知見を解説いたします。
本セミナーでは、データの使い方の基礎から、いま人工知能で話題となっているディープラーニングまで、基本的な考え方と手法の原理を解説いたします。
本セミナーでは、最初に画像の前処理・特徴量抽出手法について紹介した後、機械学習や深層学習による画像認識システムについて、プログラミング言語Pythonによるプログラム例とともに紹介いたします。
また、画像認識システムのサンプルプログラムを紹介するとともに、システム構築にあたっての注意点について解説いたします。
本セミナーでは、現在の自動運転自動車のセンシングに欠かせないセンサとなっているLiDARを一例として取り上げ、自動運転自動車周囲に存在している移動物体の運動推定手法を題材とした状態推定アルゴリズムの解説を行います。
また、金沢大学の実装例を交えて解その他の自動運転全般の技術の概要についても解説いたします。
本セミナーでは、近年のAIの主流である機械学習・深層学習の基礎を理解し、業務活用に向けた問題設計が行えるようになることを目指します。
また、Pythonの機械学習ライブラリを用いた実装例を紹介し、簡単なプロトタイプが作れるようになることを目指します。
本セミナーでは、確率的グラフィカルモデルと呼ばれる統計的機械学習モデルをテーマとして扱い、統計的機械学習モデルの基礎から応用、実装について詳解いたします。
本セミナーでは、画像フィルタリングについて基礎から解説し、MATLABを併用して実際にアルゴリズムを提示、実行し、結果を確認しながら、解説を進めます。
本セミナーでは、CNNのディープラーニングによる顔識別の仕組みや動作、効果的な学習方法、ディープラーニングで実現した最先端の識別性能や更なる精度向上方法などを、多数の顔画像を例示して分かりやすく説明いたします。