技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、光学系を用いた画像の撮影に関する技術から、画像認識技術の概要、一般的な画像認識処理フロー、評価方法、ディープラーニングの基礎、様々な画像認識アルゴリズム、また外観検査などへの応用に関して解説いたします。
本セミナーでは、データが少ない場合に人間の知識やシミュレーションを援用したり、逆に機械学習の結果から知識を抽出したり、さらには機械学習のために効率的なデータ取得を工夫したりといった、データ解析のための戦略について事例を交えながら紹介いたします。
本セミナーでは、データが少ない場合に人間の知識やシミュレーションを援用したり、逆に機械学習の結果から知識を抽出したり、さらには機械学習のために効率的なデータ取得を工夫したりといった、データ解析のための戦略について事例を交えながら紹介いたします。
本セミナーでは、生成AIを活用した効率的な学習データ作成の手法・実践ノウハウ、異常検知におけるデータ前処理・特徴抽出のポイント、製造業で生成AIを活用するためのベストプラクティス・応用事例の理解、生成AI導入に伴うリスク・その対策方法について、事例を交え実践的に解説いたします。
本セミナーでは、ディープラーニングで必ずしも学習データ数が多くない場合や異常検知で異常値のデータ数が少ないといった問題点を解決するための戦略について事例を交えながら紹介いたします。
本セミナーでは、ディープラーニングの基礎から、異常検知の考え方、異常検知の問題点、異常サンプルがない場合と、少量のサンプルがある場合でのアプローチ、生成AIを用いた外観検査の現状と最新動向について解説いたします。
本セミナーでは、光学系を用いた画像の撮影に関する技術から、画像認識技術の概要、一般的な画像認識処理フロー、評価方法、ディープラーニングの基礎、様々な画像認識アルゴリズム、また外観検査などへの応用に関して解説いたします。
本セミナーでは、Pythonプログラムについて取り上げ、コーディングの基本から、Hadoop/Spark等の活用まで、高速化、大容量データの扱いの基本を解説いたします。
本セミナーでは、ディープラーニングの基礎から、異常検知の考え方、異常検知の問題点、異常サンプルがない場合と、少量のサンプルがある場合でのアプローチ、生成AIを用いた外観検査の現状と最新動向について解説いたします。
本セミナーでは、Pythonプログラムについて取り上げ、コーディングの基本から、Hadoop/Spark等の活用まで、高速化、大容量データの扱いの基本を解説いたします。
本セミナーでは、AI・LLMの学習時間短縮と性能、回答精度の向上をテーマに、最新の技術動向と実践的なアプローチを紹介いたします。
LLMの基礎から、その学習を効率化する方法、性能を最大化するポイント、回答精度を向上させるためのテクニックまで、幅広くお伝えします。
本セミナーでは、ディジタル信号処理の基礎から、音の特徴量の求め方までを平易に解説いたします。
また、故障検知への利用および故障予知への発展の方法へのアプローチを紹介いたします。
本セミナーでは、中小製造現場でいくつかの導入実績をあげた講師が手がけたAI外観検査の取り組みを紹介いたします。
活動事例を通じて得られた、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までの知見を解説いたします。
このセミナーは「生成AIを日常業務に活用すること」を目的とし、生成AIの基本である深層学習 (ディープラーニング) の基礎知識や活用方法を解説いたします。
また、大量の文書情報からLLMへ必要な情報だけを渡す技術であるRAGについても詳しく解説いたします。
本セミナーでは、最近特に必要性が注目されている「説明できるAI」について、深層学習などのブラックボックス機械学習の説明性向上、決定木などのホワイトボックス機械学習の精度向上の方法、次世代AIである進化的機械学習、企業へのAI導入を成功させるコツについて平易に解説いたします。
本セミナーでは、中小製造現場でいくつかの導入実績をあげた講師が手がけたAI外観検査の取り組みを紹介いたします。
活動事例を通じて得られた、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までの知見を解説いたします。
本セミナーでは、ディープラーニングで必ずしも学習データ数が多くない場合や異常検知で異常値のデータ数が少ないといった問題点を解決するための戦略について事例を交えながら紹介いたします。
本セミナーでは、外観検査AIの導入に関心を抱いている技術者や管理責任者を対象とし、外観検査AIの概要、技術的背景、技術動向、導入の際に考慮すべき困難性などについて概説いたします。
また、画像からの異常検出技術の研究開発に用いられるベンチマークデータや、近年提案されている代表的な外観検査AIモデルについて紹介いたします。
本セミナーでは、少ない学習データでも有効に活用できる機械学習の方法を分かりやすく解説いたします。
本セミナーは、データ分析の基礎から応用まで、原理から具体的な手法までを平易に解説いたします。
また、デジタル信号処理のテクニックや注意すべきポイントなどについても、生体信号や音声信号、振動信号、画像など、多くの具体例を交えて説明いたします。
本セミナーでは、ディープラーニングで必ずしも学習データ数が多くない場合や異常検知で異常値のデータ数が少ないといった問題点を解決するための戦略について事例を交えながら紹介いたします。
本セミナーでは、中小製造現場でいくつかの導入実績をあげた講師が手がけたAI外観検査の取り組みを紹介いたします。
活動事例を通じて得られた、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までの知見を解説いたします。
本セミナーは、データ分析の基礎から応用まで、原理から具体的な手法までを平易に解説いたします。
また、デジタル信号処理のテクニックや注意すべきポイントなどについても、生体信号や音声信号、振動信号、画像など、多くの具体例を交えて説明いたします。
本セミナーでは、中小製造現場でいくつかの導入実績をあげた講師が手がけたAI外観検査の取り組みを紹介いたします。
活動事例を通じて得られた、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までの知見を解説いたします。