技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、画像認識問題を題材として、まず軽量化の観点からディープラーニングの基礎を説明した後、様々な軽量化技術のテクニックを紹介いたします。
各テクニックに関しては、AI系の有力国際会議 (CVPR、ICLRなど) やプレプリントサーバ (ArXiv) に掲載されている最新技術を主に扱い、理論的な厳密さよりもイメージやコンセプト重視でわかりやすくご説明いたします。
本セミナーでは、様々な分野で使われるようになってきた Transformerについて、基礎となる理論と応用を解説いたします。
本セミナーでは、グラフニューラルネットワークの基本的な知識およびいくつかの研究事例について紹介するとともに、今後の学習のための情報源などについても解説いたします。
本セミナーでは、AIに関する基礎から、AIを活用した医療機器開発プロセス、AI医療機器の業界構造、技術動向について、実際にAI医療機器の開発に携わる講師の経験を基に解説いたします。
本セミナーでは、生体情報取得の材料としての生体信号計測技術の基礎、および得られた生体信号から所望の生体情報を抽出するためのデータマイニング技術の基本について解説いたします。
生体信号には多くの種類がありますが、ここでは比較的よく利用されるものとして、脳波、心電図、筋電図、音響信号、温度、および画像情報を題材に取り上げ、これら生体信号計測のノウハウや注意事項を扱います。
運転支援システムから更に発展した自動運転を迎えるにあたり、走行環境を認識するためのセンシング技術は、より高い性能が求められ、ますます重要になります。
本セミナーでは、単独のセンシングを補間するセンサフュージョン技術を、画像処理技術と関連しながら解説します。
本セミナーでは、CNNのディープラーニングによる顔識別の仕組みや動作、効果的な学習方法、ディープラーニングで実現した最先端の識別性能や更なる精度向上方法などを、多数の顔画像を例示して分かりやすく説明いたします。
本セミナーでは、最初に画像の前処理・特徴量抽出手法について紹介した後、機械学習や深層学習による画像認識システムについて、プログラミング言語Pythonによるプログラム例とともに紹介いたします。
また、画像認識システムのサンプルプログラムを紹介するとともに、システム構築にあたっての注意点について解説いたします。
本セミナーでは、ミリ波レーダ技術の基礎とADAS向けセンサとしての応用動向を解説いたします。
本セミナーでは、Transformerの典型的モデルの仕組みから、自然言語処理、画像処理、音声認識に応用した最新モデルまでを解説いたします。
本セミナーでは、Pythonの基礎から解説し、機械学習における教師あり学習 (分類問題と回帰問題) および教師なし学習 (次元圧縮およびクラスター解析) 、医薬品開発への応用について詳解いたします。
本セミナーでは、画像処理プログラミングの基本、およびオープンソースの画像処理ライブラリであるOpenCVの導入から基礎について解説します。
本セミナーでは、中小製造現場でいくつかの導入実績をあげた講師が手がけたAI外観検査の取り組みを紹介いたします。
活動事例を通じて得られた、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までの知見を解説いたします。
本セミナーでは、Python Imaging Library (PIL) 、Scikit Image、OpenCV、PyTorchなどの高性能モジュールライブラリを使い、機械学習や最適化を含めてアルゴリズムの原理の説明とプログラム例を並行して提示することで、コンピュータビジョン技術と実装について理解を深めていただきます。
本セミナーは、遠赤外線カメラの基本原理から解説し、講師らが開発した車載用遠赤外線カメラシステムの開発課題、車載用途における認識システムの課題や効果など、開発事例を含めて紹介いたします。
本セミナーでは、3次元空間情報に関するデータ形式の1つである3次元点群を効率良く処理し、それを活用する情報処理の基本技法について、実例を挙げながら具体的に解説いたします。
本セミナーでは、ORB-SLAMを実例とした処理手順、高精度化のポイントや、ディープラーニング応用、IMUを用いたvisual inertial SLAMなどのvSLAMの現在と、Dead Reckoning (DR) や無線を用いた屋内測位技術などを解説いたします。
本セミナーでは、デプス・センシング・アルゴリズムの基礎から、それを用いた非接触生体センシングの動作原理、ヒューマン・ヘルスケア関連アプリケーションへの展開について、次世代デバイスHololensのデモを交えて解説いたします。
本セミナーでは、近接分離最適化について基礎から解説し、応用例とサンプルコード (MATLAB) を紹介しながら、詳細な理論に立ち入ることなく、近接分離最適化を使いこなすためのポイントを解説いたします。
本セミナーでは、グラフニューラルネットワークの基本的な知識およびいくつかの研究事例について紹介するとともに、今後の学習のための情報源などについても解説いたします。
本セミナーでは、グラフニューラルネットワークの基本的な知識およびいくつかの研究事例について紹介するとともに、今後の学習のための情報源などについても解説いたします。
本セミナーでは、最初に画像の前処理・特徴量抽出手法について紹介した後、機械学習や深層学習による画像認識システムについて、プログラミング言語Pythonによるプログラム例とともに紹介いたします。
また、画像認識システムのサンプルプログラムを紹介するとともに、システム構築にあたっての注意点について解説いたします。
本セミナーでは、自律走行や拡張現実感 (AR) などの基盤技術として用いられるVisual SLAMについて、基礎から実装法まで解説いたします。
3次元的な自己位置推定・マッピング処理を対象としたコンピュータビジョン技術を初歩から概説いたします。
カメラの投影モデルや特徴点トラッキングなどの基礎技術から、古くから研究がなされてきたオフライン型structure from motion (SfM) 、 Hololens、ARCore、ARKitなどにも用いられるオンライン型visual SLAMの枠組みに至るまでを理解できることを目的とします。