技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

画像認識技術を用いたAI外観検査の現場導入事例と精度向上指針

画像認識技術を用いたAI外観検査の現場導入事例と精度向上指針

~画像認識技術の基礎・原理 / 画像認識システムの実際、導入実例・運用方法 / 識別根拠の課題と品質保証への対応~
オンライン 開催

開催日

  • 2021年11月24日(水) 13時00分 16時30分

受講対象者

  • AI関連技術・画像認識技術による外観検査業務の効率化や自動化・無人化を検討中の方、着手し始めた方
  • 画像認識・物体解析技術の応用事例を調査している方
  • 現場への適用・実装までを見据えたデータサイエンス業務を進めたい方

修得知識

  • 画像認識技術の基礎・原理
  • 画像認識システムの実際
  • 画像認識システムの導入実例
  • 画像認識システムの運用方法

プログラム

 ここ数年、AI (Artificial Intelligence、人工知能) の応用が急速に進展しています。劇的な認識率の向上をもたらしAI分野を発展させたのが、脳の働きからヒントを得た学習手法である「Deep Learning (深層学習) 」のアルゴリズムであり、実装が容易なライブラリの登場により、画像認識を中心に利用例が報告されています。
 かたや、製造現場ではAI外観検査 (画像識別) を中心に導入プロジェクトが立ち上がっていますが、狙った識別精度が得られず、導入に至らない例が聞かれます。学習データ (画像データ) の前処理 (データクレンジング) にかかる負担や良品・不良品データの不均衡がおもな原因にあげられます。また、特にDeep Learningでは識別にかかる根拠がわかりにくく、品質保証の観点から導入を見送る現場も多いです。
 そこで、本講座は中小製造現場でいくつかの導入実績をあげた講師が、自身が手がけたAI外観検査の取り組みを紹介。活動事例を通じて、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までを解説します。さらには、導入後の運用を通じての精度向上のための考え方にも触れます。

  1. AI画像認識システムの動向と導入基礎
    1. 国内外のAI画像認識の最新事例
    2. AI画像認識システムのメリット
    3. AI画像認識システム導入時の留意点
    4. 「機械学習」と「深層学習」の選択
  2. AI画像認識システムの各種実例
    1. パン識別システム「BakeryScan」の特徴と実際
      1. BakeryScanのシステム構成
      2. BakeryScanの画像処理 (特徴量の抽出方法等)
      3. パン識別にかかる課題
      4. 現場導入時の課題
      5. BakeryScanのアルゴリズムの改良
    2. 不織布画像検査システムの特徴と実際
      1. 不織布の異物検査
      2. 既存の画像検査システムの課題
      3. 不織布画像検査システムの構成と特徴
      4. 機械学習による異物判別
    3. 油圧部品についての自動外観検査システムの特徴と実際
      1. 外観検査の課題
      2. 正常・異常判別と機械学習による2クラス分類
      3. AIの限界とデータセットの不均衡
      4. ONE Class SVM (OCSVM) による良品学習
      5. OCSVMの課題とVAEによる異常検出
      6. 導入した外観検査システムとロボットのハンドカメラによる撮像
      7. VAEによる傷検出と誤検出の改善
  3. AI外観検査のはじめ方と機械学習のためのを意識した画像データ準備・前処理
    1. AI外観検査の進め方
      1. 検査項目の網羅と評価基準の明確化 学習データの取集と用意
      2. 試作開発の前段階における検証各種機械学習の検証
      3. 転移学習の活用
      4. 求められる人材・スキル
    2. 機械学習を意識した画像データ (学習データ) の準備
      1. 画像データの形式
      2. 学習データ (データセット) の準備
      3. 必要な学習データ
    3. 学習が難しい画像
      1. 撮影環境や条件のばらつき
      2. NG・OKの差異がわかりにくい
      3. キズなど一方向からでは見づらいなど
    4. 学習しやすい画像のための前処理:そのノウハウ・実際
      1. 画像のノイズ/歪みなどを取り除く
      2. 明るさや色合いを調整/輝度調整
      3. オブジェクトの輪郭を強調
      4. 領域抽出
  4. 学習データの量と質の課題
    1. 学習データの準備にかかる負荷 (画像の収集、ラベルの付与)
    2. 学習データはどの程度必要か
    3. 外観検査における学習データの質の課題 (データの不均衡)
    4. 学習データの拡張 (Data Augmentation)
    5. ラベル付き公開データセットと転移学習による対応
  5. 識別根拠の課題と品質保証への対応
    1. Deep Learningは内部分析が困難
    2. 説明可能性・解釈性 (XAI) に関する技術
    3. Deep Learningが着目しているところ (ネットワークの可視化)
    4. 品質保証への対応 (AI外観検査と目視検査との連携/段階的なAI外観検査の導入)
  6. AI画像認識システム導入の進め方
    1. 要求定義の取りまとめ
    2. AI機能の選定
    3. 社内教育とプロジェクトの立ち上げ方 (産学連携助成の活用等)
    4. 学習データの準備とその留意点
    5. 概念実証 (PoC) の特徴・考え方・進め方
    6. ラインでの実運用
    7. 運用による精度向上
    • 質疑応答

講師

  • 森本 雅和
    兵庫県立大学 大学院 工学研究科
    准教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 30,400円 (税別) / 33,440円 (税込)
複数名
: 20,000円 (税別) / 22,000円 (税込)

複数名受講割引

  • 2名様以上でお申込みの場合、1名あたり 20,000円(税別) / 22,000円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 30,400円(税別) / 33,440円(税込)
    • 2名様でお申し込みの場合 : 2名で 40,000円(税別) / 44,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 60,000円(税別) / 66,000円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」とご記入ください。
  • 他の割引は併用できません。
  • サイエンス&テクノロジー社の「2名同時申込みで1名分無料」価格を適用しています。

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

  • 1名様あたり 10,000円(税別) / 11,000円(税込)
  • 企業に属している方(出向または派遣の方も含む)は、対象外です。
  • お申込み者が大学所属名でも企業名義でお支払いの場合、対象外です。

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は、PDFファイルをダウンロードいただきます。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2021/12/6 車載用遠赤外線カメラシステムの効果と課題、及び遠赤外線カメラの将来性について オンライン
2021/12/7 Pythonで始めるコンピュータビジョン (CV) 技術の超入門 オンライン
2021/12/9 機械学習の精度を上げるデータ加工と特徴量エンジニアリング オンライン
2021/12/10 製造業でのAI技術の導入・活用に必要な人材育成と実務 オンライン
2021/12/10 医薬品開発のためのPython入門 オンライン
2021/12/13 機械学習によるデータ分析の正しい進め方とビジネスへの適用 オンライン
2021/12/14 XAI (Explainable AI) 説明可能なAIの基本とその活用 オンライン
2021/12/15 音による故障検知および故障予知 オンライン
2021/12/15 工場の自動化設備・自動化ラインにおける構想設計のポイントと実践 オンライン
2021/12/16 Transformer 徹底解説 オンライン
2021/12/17 蒸留技術の要点とAIを活用した応用研究 オンライン
2021/12/17 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2021/12/17 医薬品の外観目視検査における要求品質の明確化と異物低減対策 オンライン
2021/12/17 Pythonによる機械学習プログラミング入門 オンライン
2021/12/20 Deep Learningに基づく画像認識の基礎から最近の発展まで オンライン
2021/12/20 リザバーコンピューティング入門 オンライン
2021/12/22 機械学習 (AI) を用いた結晶構造予測、構造解析の自動化 オンライン
2021/12/23 Pythonではじめる機械学習入門講座 オンライン
2021/12/23 逆強化学習・模倣学習の基礎と応用 オンライン
2022/1/12 プロセスインフォマティクスの展開と合成、製造の最適化 オンライン

関連する出版物

発行年月
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2015/8/17 防犯・監視カメラ〔2015年版〕 技術開発実態分析調査報告書
2015/8/17 防犯・監視カメラ〔2015年版〕 技術開発実態分析調査報告書 (CD-ROM版)
2014/3/7 画像処理・画像符号化・画像評価法
2013/10/29 高効率動画像符号化方式:H.265/HEVC (High Efficiency Video Coding)
2013/8/2 HLAC特徴を用いた学習型汎用認識
2013/6/21 機械学習によるパターン識別と画像認識への応用
2013/6/1 画像診断機器(磁気共鳴) 技術開発実態分析調査報告書 (CD-ROM版)
2013/6/1 画像診断機器(磁気共鳴) 技術開発実態分析調査報告書
2013/3/29 3次元物体認識手法とその応用 (カラー版)