技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、ベイズ最適化の概要と「条件最適化」「探索」への応用例、 ガウス過程回帰モデルについて詳しく解説いたします。
本セミナーでは、カルマンフィルタの基礎理論について詳細に解説します。センシング、制御、あるいは機械学習などのAI の分野とカルマンフィルタの関係についても述べます。
本セミナーでは、Multi-Sigmaの基本的な原理と具体的な解析手順を学ぶとともに、今後様々な分野における活用方法について説明いたします。
本セミナーでは、効率的な材料設計やプロセス・装置設計を可能にする実験計画法について取り上げ、必要なデータ解析理論とベイズ最適化の基礎、具体的な応用例や最新の研究事例などを解説いたします。
本セミナーでは、機械学習の基礎から解説し、ものづくり分野でデータ駆動型人工知能の活用、多彩なベイズ最適化の種類・特徴、材料探索など複数の応用例を詳解いたします。
本セミナーでは、機械学習を用いたプロジェクトにおいて、データが少ない場合に人間の知識やシミュレーションを援用したり、逆に機械学習の結果から知識を抽出したり、さらには機械学習のために効率的なデータ取得を工夫したりといった、データ解析のための戦略について事例を交えながら解説いたします。
本セミナーでは、ベイズ統計学について基礎からわかりやすく解説し、一般的な統計学との違い、ベイズ統計学の使いどころがわかる事例も紹介いたします。
本セミナーでは、確率の基本からベイズモデリングの最前線までを単純なデータを使った実演や具体的な応用事例紹介を通じて、ベイズモデリングに基づく機械学習の全体像を理解することができます。
本セミナーでは、機械学習の基本的な教師あり学習手法の考え方や理論的背景の説明とともに、Pythonを用いた簡単な例題を交えて機械学習の理解を深めます。
本セミナーでは、できるだけ少量の学習データから有益なモデル化や利用が行える機械学習を実現するための手法について、数式やプログラムをほとんど使わずに率直かつ平易に解説いたします。
本セミナーでは、研究開発の高精度化・高効率化を実現するデータ駆動型アプローチ・機械学習・実験計画について詳しく解説いたします。
機械学習による実験計画の考え方から、ベイズ最適化・能動学習の基礎、機械学習モデルの超パラメータ最適化・品質領域の推定・プロセス条件の最適化などの材料工学への各応用例、Pythonによる実行方法までを解説いたします。
本セミナーでは、おもに統計における正則化線形回帰という視点からスパースモデリングを概観し、多数提案されている主要な発展的手法も解説いたします。
さらに、具体的な問題をスパースモデリングにより定式化して効率的に解決する事例を、簡単なプログラム例とデモを交えて紹介いたします。
本セミナーでは、ベイズ統計及びベイズモデリングの基本的な考え方を多くの例を交えて解説いたします。
また、最近話題のベイズ分析ツールRStanなどの基礎となるアルゴリズム (マルコフ連鎖モンテカルロ法)を取り上げ、ベイズ統計の各モデリング手法、RStanによるデータ分析の実践例を示します。
本セミナーでは、通常の統計学 (標本理論) との対比を通じて、ベイズ統計学の考え方および有用性について紹介いたします。
本セミナーでは、カルマンフィルタの基礎理論について詳細に解説します。センシング、制御、あるいは機械学習などのAI の分野とカルマンフィルタの関係についても述べます。
本セミナーでは、機械学習の基本的な教師あり学習手法の考え方や理論的背景の説明とともに、Pythonを用いた簡単な例題を交えて機械学習の理解を深めます。
本セミナーでは、データの可視化、モデルの予測性能向上、モデルの逆解析を特に重点的に解説いたします。
また、分子設計・材料設計・プロセス設計・プロセス管理に関する最新の研究事例を紹介いたします。
ケモインフォマティクス・プロセスインフォマティクスにも役立つ内容となっております。