技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、ベイズ統計及びベイズモデリングの基本的な考え方を多くの例を交えて解説いたします。
また、最近話題のベイズ分析ツールRStanなどの基礎となるアルゴリズム (マルコフ連鎖モンテカルロ法)を取り上げ、ベイズ統計の各モデリング手法、RStanによるデータ分析の実践例を示します。
本セミナーでは、機械学習を用いたプロジェクトにおいて、データが少ない場合に人間の知識やシミュレーションを援用したり、逆に機械学習の結果から知識を抽出したり、さらには機械学習のために効率的なデータ取得を工夫したりといった、データ解析のための戦略について事例を交えながら解説いたします。
本セミナーでは、データの可視化、モデルの予測性能向上、モデルの逆解析を特に重点的に解説いたします。
また、分子設計・材料設計・プロセス設計・プロセス管理に関する最新の研究事例を紹介いたします。
ケモインフォマティクス・プロセスインフォマティクスにも役立つ内容となっております。
本セミナーでは、ベイズ統計学について基礎からわかりやすく解説し、一般的な統計学との違い、ベイズ統計学の使いどころがわかる事例も紹介いたします。
本セミナーでは、ベイズ統計学について基礎からわかりやすく解説し、一般的な統計学との違い、ベイズ統計学の使いどころがわかる事例も紹介いたします。
本セミナーでは、線形回帰、Lasso、多変量解析、データサイエンスへの応用技術を解説いたします。
本セミナーでは、材料設計や生物実験、心理学実験など様々なタイプの実験のデザインで求められる実験計画法や統計的検定、ベイズ最適化などの効率的にデータを収集するための方法について解説いたします。
本セミナーでは、Pythonプログラミングの基礎、統計解析の基礎、Pythonを使った統計解析手法について、わかりやすく解説いたします。
本セミナーでは、材料設計や生物実験、心理学実験など様々なタイプの実験のデザインで求められる実験計画法や統計的検定、ベイズ最適化などの効率的にデータを収集するための方法について解説いたします。
本セミナーでは、多変量解析・データ処理の基礎から解説し、特徴抽出や次元削減、データ前処理、相関とパターンの発見など、解析の手順を事例を交えて、分かりやすく解説いたします。
本セミナーでは、カルマンフィルタの基礎理論について詳細に解説します。センシング、制御、あるいは機械学習などのAI の分野とカルマンフィルタの関係についても述べます。
本セミナーでは、効率的な材料設計やプロセス・装置設計を可能にする実験計画法について取り上げ、必要なデータ解析理論とベイズ最適化の基礎、具体的な応用例や最新の研究事例などを解説いたします。
本セミナーでは、ベイズ統計及びベイズモデリングの基本的な考え方を多くの例を交えて解説いたします。
また、最近話題のベイズ分析ツールRStanなどの基礎となるアルゴリズム (マルコフ連鎖モンテカルロ法)を取り上げ、ベイズ統計の各モデリング手法、RStanによるデータ分析の実践例を示します。
本セミナーでは、ベイズ統計及びベイズモデリングの基本的な考え方を多くの例を交えて解説いたします。
また、最近話題のベイズ分析ツールRStanなどの基礎となるアルゴリズム (マルコフ連鎖モンテカルロ法)を取り上げ、ベイズ統計の各モデリング手法、RStanによるデータ分析の実践例を示します。
本セミナーでは、ベイズ統計及びベイズモデリングの基本的な考え方を多くの例を交えて解説いたします。
また、最近話題のベイズ分析ツールRStanなどの基礎となるアルゴリズム (マルコフ連鎖モンテカルロ法)を取り上げ、ベイズ統計の各モデリング手法、RStanによるデータ分析の実践例を示します。
本セミナーでは、ベイズ最適化について基礎から解説し、条件最適化・適切な課題設定・複数の物性値の最適化などのポイントを詳しく解説いたします。
本セミナーでは、カルマンフィルタの基礎理論について詳細に解説します。センシング、制御、あるいは機械学習などのAI の分野とカルマンフィルタの関係についても述べます。
本セミナーでは、機械学習を用いたプロジェクトにおいて、データが少ない場合に人間の知識やシミュレーションを援用したり、逆に機械学習の結果から知識を抽出したり、さらには機械学習のために効率的なデータ取得を工夫したりといった、データ解析のための戦略について事例を交えながら解説いたします。
本セミナーでは、ベイズ最適化の基礎や活用のコツ、ベイズ最適化を活用した材料開発の最新動向について解説いたします。
本セミナーでは、実応用上特に重要となる単目的最適化問題、多目的最適化問題およびロバスト最適化問題をベースにベイズ最適化のアルゴリズムについて解説いたします。
また、ベイズ最適化を行う際は獲得関数と呼ばれる評価関数を適切に設計する必要があるが、どのような問題に対してどのような獲得関数を設計すべきかについても概説いたします。
本セミナーでは、機械学習の基本的な教師あり学習手法の考え方や理論的背景の説明とともに、Pythonを用いた簡単な例題を交えて機械学習の理解を深めます。