技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

マテリアルズインフォマティクスのためのデータ解析

マテリアルズインフォマティクスのためのデータ解析

オンライン 開催

概要

本セミナーでは、データの可視化、モデルの予測性能向上、モデルの逆解析を特に重点的に解説いたします。
また、分子設計・材料設計・プロセス設計・プロセス管理に関する最新の研究事例を紹介いたします。
ケモインフォマティクス・プロセスインフォマティクスにも役立つ内容となっております。

開催日

  • 2024年5月31日(金) 10時00分 17時00分

修得知識

  • ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクス・データ解析・機械学習・分子設計・材料設計・プロセス設計・プロセス管理の基礎知識
  • ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクス分野の最新の研究事例
  • データ解析の一般的なすすめ方・活用の仕方
  • データ解析の応用事例
  • 最新のデータ解析手法・モデリング手法
  • モデルの予測精度向上の方法
  • モデルの逆解析の方法

プログラム

 近年、化学・産業においてデータが蓄積されつつあり、そのデータを解析する動きが活発になっている。しかし、実験結果、高機能性材料などの開発データ、化学・産業プラントにおいて様々な製品を製造する際のデータなど、蓄積されたデータを十分に活用しきれていない状況も存在する。
 本セミナーでは、そのような化学・産業データの使い方・解析の仕方を基礎から解説する。情報科学・データサイエンスに基づき、データから種々の材料の機能を予測するモデルを構築したり、構築したモデルを活用することで新たな構造・実験条件・材料・装置を設計したりする方法である。さらに、ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクス分野を中心にして豊富な応用事例も紹介する。

  1. ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクスの基礎知識
    1. 機械学習・人工知能
    2. 定量的構造物性相関・定量的構造活性相関
    3. 化学構造生成
    4. 分子設計
    5. 材料設計
    6. プロセス設計
    7. プロセス管理
    8. ケモインフォマティクス
    9. マテリアルズインフォマティクス
    10. プロセスインフォマティクス
  2. 化学・産業データ解析の進め方・活用方法
    1. データの形式、記述子
    2. 一般的なデータの前処理
    3. データの可視化・低次元化
      1. ヒストグラム・散布図・箱ひげ図・相関行列
      2. 主成分分析 (Principal Component Analysis, PCA)
      3. 可視化の性能を検討するための指標
      4. [発展] Generative Topographic Mapping (GTM)
      5. [発展] 多様体学習
    4. クラスタリング
      1. 階層的クラスタリング
      2. [発展] 混合ガウスモデル (Gaussian Mixture Model, GMM)
    5. クラス分類
      1. 線形判別分析 (Linear Discriminant Analysis, LDA)
      2. 決定木 (Decision Tree, TD)
      3. ランダムフォレスト (Random Forest, RF)
      4. [発展] サポートベクターマシン (Support Vector Machine, SVM)
    6. 回帰分析
      1. 最小二乗法による重回帰分析 (Multiple Linear Regression (MLR) or Ordinary Least Squares (OLS) )
      2. 部分的最小二乗法 (Partial Least Squares, PLS)
      3. 決定木 (Decision Tree, DT)
      4. ランダムフォレスト (Random Forest, RF)
      5. [発展] サポートベクター回帰 (Support Vector Regression, SVR)
    7. モデルの予測性能の向上
      1. 予測性能の評価
      2. アンサンブル学習
      3. [発展] 半教師あり学習 (半教師付き学習)
    8. モデルの適用範囲
      1. データ範囲
      2. データ中心からの距離
      3. データ密度
      4. アンサンブル学習
    9. モデルの逆解析
      1. モデルの適用範囲を考慮した逆解析
      2. グリッドサーチ
      3. サンプリング
      4. [発展] ベイズの定理
    10. 実行するためのプログラム紹介
  3. 分子設計・材料設計・プロセス設計・プロセス管理に関する最新の研究事例
    1. 化学空間の可視化に基づく分子設計
    2. 定量的構造物性 (活性) 相関モデルの逆解析に基づく分子設計
    3. 定量的構造物性 (活性) 相関モデルの適用範囲を考慮した分子設計
    4. 適応的実験計画法による材料設計
    5. シミュレーションとインフォマティクス技術を活用したプロセス設計
  4. まとめ・質疑応答

講師

  • 金子 弘昌
    明治大学 理工学部 応用化学科
    准教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 45,000円 (税別) / 49,500円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、1名あたり 45,000円(税別) / 49,500円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 55,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,000円(税別) / 99,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 135,000円(税別) / 148,500円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。

アカデミック割引

  • 1名様あたり 30,000円(税別) / 33,000円(税込)

日本国内に所在しており、以下に該当する方は、アカデミック割引が適用いただけます。

  • 学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院、短期大学、附属病院、高等専門学校および各種学校の教員、生徒
  • 病院などの医療機関・医療関連機関に勤務する医療従事者
  • 文部科学省、経済産業省が設置した独立行政法人に勤務する研究者。理化学研究所、産業技術総合研究所など
  • 公設試験研究機関。地方公共団体に置かれる試験所、研究センター、技術センターなどの機関で、試験研究および企業支援に関する業務に従事する方
  • 支払名義が企業の場合は対象外とさせていただきます。
  • 企業に属し、大学、公的機関に派遣または出向されている方は対象外とさせていただきます。

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/5/23 ベイズ統計から学ぶ統計的機械学習 オンライン
2024/5/24 マテリアルインフォマティクスの材料開発への適用と活用事例 オンライン
2024/5/24 ChatGPTによる「丸投げ統計解析」の実施法 オンライン
2024/5/27 機械学習による適応的実験計画 オンライン
2024/5/27 外観検査へのAI導入と生成AIによるトレーニングデータ不足への対応 オンライン
2024/5/28 R&D部門の研究・実験データのExcelにおける効果的な蓄積・分析技術 オンライン
2024/5/29 マテリアルズ・プロセスインフォマティクスの基礎とポリマー材料設計への応用 オンライン
2024/5/29 高分子複合材料のレオロジーとメカニズムに基づく材料設計 オンライン
2024/5/31 ChatGPTによる丸投げ統計解析/解析結果の解釈 オンライン
2024/6/4 ChatGPTによる「丸投げ統計解析」の実施法 オンライン
2024/6/4 最適化技術の本命 : 進化計算法 (EC:Evolutionary Computation) の基礎と応用 オンライン
2024/6/5 生成AIと自社データの連携によるアイデア創出と研究プロセスの変革 オンライン
2024/6/5 マテリアルズインフォマティクスの基礎技術となる計算科学シミュレーション オンライン
2024/6/5 マテリアルズ・プロセスインフォマティクスの基礎とポリマー材料設計への応用 オンライン
2024/6/7 マテリアルDXによる材料開発の効率化、高速化とその推進 オンライン
2024/6/10 機械学習 (ディープラーニング) の基礎・活用・実践 (全3回) オンライン
2024/6/10 Python基礎と機械学習 基礎 オンライン
2024/6/11 電子実験ノートの導入とR&Dデータ共有・利活用ノウハウ オンライン
2024/6/11 高分子複合材料のレオロジーとメカニズムに基づく材料設計 オンライン
2024/6/12 ChatGPTによる丸投げ統計解析/解析結果の解釈 オンライン

関連する出版物

発行年月
2024/1/12 世界のマテリアルズ・インフォマティクス 最新業界レポート
2023/12/27 実験の自動化・自律化によるR&Dの効率化と運用方法
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2023/4/28 ケモインフォマティクスにおけるデータ収集の最適化と解析手法
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/30 水と機能性ポリマーに関する材料設計、最新応用
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/12/30 実践Rケモ・マテリアル・データサイエンス
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/8/1 材料およびプロセス開発のためのインフォマティクスの基礎と研究開発最前線
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 マテリアルズ・インフォマティクスによる材料開発と活用集