技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、複数の変数を合成した合成変数を構成することで情報縮約を行う主成分分析と、観測されていない変数である潜在変数を抽出する因子分析にスポットを当て、多変量解析に入口を立ち、そこから先へ自ら進んでいくための第一歩を踏み出す手助けをすることを目的とします。
本セミナーでは、複数の変数を合成した合成変数を構成することで情報縮約を行う主成分分析と、観測されていない変数である潜在変数を抽出する因子分析にスポットを当て、多変量解析に入口を立ち、そこから先へ自ら進んでいくための第一歩を踏み出す手助けをすることを目的とします。
本セミナーでは、ベイズ統計学について基礎からわかりやすく解説し、一般的な統計学との違い、ベイズ統計学の使いどころがわかる事例も紹介いたします。
本セミナーでは、ベイズ統計学について基礎からわかりやすく解説し、一般的な統計学との違い、ベイズ統計学の使いどころがわかる事例も紹介いたします。
本セミナーでは、ベイズ統計及びベイズモデリングの基本的な考え方を多くの例を交えて解説いたします。
また、最近話題のベイズ分析ツールRStanなどの基礎となるアルゴリズム (マルコフ連鎖モンテカルロ法)を取り上げ、ベイズ統計の各モデリング手法、RStanによるデータ分析の実践例を示します。
本セミナーでは、ベイズ統計及びベイズモデリングの基本的な考え方を多くの例を交えて解説いたします。
また、最近話題のベイズ分析ツールRStanなどの基礎となるアルゴリズム (マルコフ連鎖モンテカルロ法)を取り上げ、ベイズ統計の各モデリング手法、RStanによるデータ分析の実践例を示します。
本セミナーでは、ベイズ統計学について基礎からわかりやすく解説し、一般的な統計学との違い、ベイズ統計学の使いどころがわかる事例も紹介いたします。
本セミナーでは、ベイズ統計学について基礎からわかりやすく解説し、一般的な統計学との違い、ベイズ統計学の使いどころがわかる事例も紹介いたします。
本セミナーでは、線形回帰、Lasso、多変量解析、データサイエンスへの応用技術を解説いたします。
本セミナーでは、多変量解析について基礎から解説し、重回帰分析、主成分分析、分散分析 (ANOVA) 、クラスター分析など代表的な手法について解説いたします。
ご自身が関わっている業務や研究課題について、どのような手法を適用していくべきか、そのためにどんな準備が必要かについて、ヒントが得られることと思います。
本セミナーでは、多変量解析について基礎から解説し、重回帰分析、主成分分析、分散分析 (ANOVA) 、クラスター分析など代表的な手法について解説いたします。
ご自身が関わっている業務や研究課題について、どのような手法を適用していくべきか、そのためにどんな準備が必要かについて、ヒントが得られることと思います。
本セミナーでは、多変量解析・データ処理の基礎から解説し、特徴抽出や次元削減、データ前処理、相関とパターンの発見など、解析の手順を事例を交えて、分かりやすく解説いたします。
本セミナーでは、ベイズ統計及びベイズモデリングの基本的な考え方を多くの例を交えて解説いたします。
また、最近話題のベイズ分析ツールRStanなどの基礎となるアルゴリズム (マルコフ連鎖モンテカルロ法)を取り上げ、ベイズ統計の各モデリング手法、RStanによるデータ分析の実践例を示します。
本セミナーでは、ベイズ統計及びベイズモデリングの基本的な考え方を多くの例を交えて解説いたします。
また、最近話題のベイズ分析ツールRStanなどの基礎となるアルゴリズム (マルコフ連鎖モンテカルロ法)を取り上げ、ベイズ統計の各モデリング手法、RStanによるデータ分析の実践例を示します。
本セミナーでは、多変量解析について基礎から解説し、多変量解析の考え方と活用するためのポイントを解説いたします。
本セミナーでは、1D CAE、デジタルツイン、機械学習の現場への導入・運用ポイントを詳解いたします。
本セミナーでは、多変量解析について基礎から解説し、重回帰分析、主成分分析、分散分析 (ANOVA) 、クラスター分析など代表的な手法について解説いたします。
ご自身が関わっている業務や研究課題について、どのような手法を適用していくべきか、そのためにどんな準備が必要かについて、ヒントが得られることと思います。
本セミナーでは、簡単に操作できる「Rコマンダー」の実演を交えながら、多変量解析の進め方、および不具合解析、素材の特性予測、製品の分類等における使い分けについて分かりやすく解説いたします。
本セミナーでは、多変量解析について基礎から解説し、重回帰分析、主成分分析、分散分析 (ANOVA) 、クラスター分析など代表的な手法について解説いたします。
ご自身が関わっている業務や研究課題について、どのような手法を適用していくべきか、そのためにどんな準備が必要かについて、ヒントが得られることと思います。
本セミナーでは、ベイズ統計及びベイズモデリングの基本的な考え方を多くの例を交えて解説いたします。
また、最近話題のベイズ分析ツールRStanなどの基礎となるアルゴリズム (マルコフ連鎖モンテカルロ法)を取り上げ、ベイズ統計の各モデリング手法、RStanによるデータ分析の実践例を示します。