技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、機械学習の適切・効果的な利用方法、代替モデル構築のためのデータに対する考え方、データ取得のための実験計画の立て方、ポイントについて詳解いたします。
本セミナーでは、研究開発における生成系AIの活用について取り上げ、マクロやプログラミング構文の検索、 特許情報の収集・検索、契約書の不備の確認など、研究開発へのAI活用の歴史的背景、考え方、長所短所、注意点などを広く解説いたします。
本セミナーでは、機械学習について基礎から解説し、ディープラーニングの具体的な実践方法をわかりやすく解説いたします。
このセミナーではPython, 統計、ケモメトリクス・機械学習について基礎から解説し、スペクトルデータから目的変数の予測、画像解析など、実践的なプログラムを通して解説いたします。
本セミナーでは、研究開発の高精度化・高効率化を実現するデータ駆動型アプローチ・機械学習・実験計画について詳しく解説いたします。
機械学習による実験計画の考え方から、ベイズ最適化・能動学習の基礎、機械学習モデルの超パラメータ最適化・品質領域の推定・プロセス条件の最適化などの材料工学への各応用例、Pythonによる実行方法までを解説いたします。
本セミナーでは、ベイズ統計学について基礎からわかりやすく解説し、一般的な統計学との違い、ベイズ統計学の使いどころがわかる事例も紹介いたします。
本セミナーでは、回帰モデルに注目し、機械学習を用いた化合物の特性予測、そしてベイズ最適化を用いた条件探索について、Pythonを使った実装を交えて解説いたします。
本セミナーでは、スパースモデリング、ベイズ推論、深層学習を複合させた材料DXについて詳解いたします。
本セミナーでは、外観検査システムの基礎から画像処理、機械学習、ディープラーニングと順を追って作成に必要な技術について解説いたします。
本セミナーでは、ベイズ統計学について基礎からわかりやすく解説し、一般的な統計学との違い、ベイズ統計学の使いどころがわかる事例も紹介いたします。
本セミナーでは、外観検査システムの基礎から画像処理、機械学習、ディープラーニングと順を追って作成に必要な技術について解説いたします。
本セミナーでは、機械学習について基礎から解説し、ディープラーニングの具体的な実践方法をわかりやすく解説いたします。
本セミナーでは、外観検査システムの基礎から画像処理、機械学習、ディープラーニングと順を追って作成に必要な技術について解説いたします。
本セミナーでは、特許調査の実務について基礎から解説し、機械学習による特許調査をデモを交えて解説いたします。
本セミナーは、Google Colabを使用して、PyCaretを利用した異常検知プログラムを動かすハンズオンセッションを行います。
本セミナーでは、階層的な構造をもつ高分子の構造形成に焦点を当て、その基礎概論を述べたあと、高分子のモデリング手法や分子シミュレーション手法の基礎を解説いたします。
また、OCTAやLAMMPS、Gromacsなど、高分子シミュレーションにおいてよく用いられるソフトウェアについて、最近の研究事例を交えて紹介いたします。
本セミナーでは、機械学習について基礎から解説し、ディープラーニングの具体的な実践方法をわかりやすく解説いたします。
本セミナーでは、機械学習について基礎から解説し、ディープラーニングの具体的な実践方法をわかりやすく解説いたします。
本セミナーでは、ベイズ統計学について基礎からわかりやすく解説し、一般的な統計学との違い、ベイズ統計学の使いどころがわかる事例も紹介いたします。
本セミナーでは、階層的な構造をもつ高分子の構造形成に焦点を当て、その基礎概論を述べたあと、高分子のモデリング手法や分子シミュレーション手法の基礎を解説いたします。
また、OCTAやLAMMPS、Gromacsなど、高分子シミュレーションにおいてよく用いられるソフトウェアについて、最近の研究事例を交えて紹介いたします。
本セミナーでは、ベイズ統計学について基礎からわかりやすく解説し、一般的な統計学との違い、ベイズ統計学の使いどころがわかる事例も紹介いたします。
本セミナーでは、線形回帰、Lasso、多変量解析、データサイエンスへの応用技術を解説いたします。
本セミナーでは、材料設計や生物実験、心理学実験など様々なタイプの実験のデザインで求められる実験計画法や統計的検定、ベイズ最適化などの効率的にデータを収集するための方法について解説いたします。
本セミナーでは、Pythonプログラミングの基礎、統計解析の基礎、Pythonを使った統計解析手法について、わかりやすく解説いたします。
本セミナーでは、多変量解析について基礎から解説し、重回帰分析、主成分分析、分散分析 (ANOVA) 、クラスター分析など代表的な手法について解説いたします。
ご自身が関わっている業務や研究課題について、どのような手法を適用していくべきか、そのためにどんな準備が必要かについて、ヒントが得られることと思います。
本セミナーでは、機械学習について基礎から解説し、ディープラーニングの具体的な実践方法をわかりやすく解説いたします。