技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、自動車における周辺検知、リアルタイムセンシングに向けたセンサ処理、 ミリ波レーダによる対象物認識、LiDARのカメラとのフュージョン技術について解説いたします。
本セミナーでは、ディープラーニングの基礎から、異常検知の考え方、異常検知の問題点、異常サンプルがない場合と、少量のサンプルがある場合でのアプローチ、生成AIを用いた外観検査の現状と最新動向について解説いたします。
本セミナーでは、Pythonプログラムについて取り上げ、コーディングの基本から、Hadoop/Spark等の活用まで、高速化、大容量データの扱いの基本を解説いたします。
本セミナーでは、ディープラーニングの基礎から、異常検知の考え方、異常検知の問題点、異常サンプルがない場合と、少量のサンプルがある場合でのアプローチ、生成AIを用いた外観検査の現状と最新動向について解説いたします。
本セミナーでは、データの構造と機械学習に適したデータの変換方法から、Pythonを使った教師なし学習による特徴抽出、教師あり機械学習を用いた目的の情報をデータから引き出す方法を解説いたします。
本セミナーでは、各社の従来ADASセンサの特性と、レベル3以上用として発表されている各社最新の自動運転センサ状況を紹介しながら、従来センサとLiDARの技術を解説し、これらセンサを組み合わせるセンサフュージョン技術の基礎から応用、今後の技術動向を説明いたします。
本セミナーでは、3次元的な自己位置推定・環境地図作成のためのコンピュータビジョン技術を基礎から解説いたします。
具体的には特徴点マッチングや画像検索等の画像処理技術及びカメラの透視投影モデル、三角測量、バンドル調整等のコンピュータビジョン技術を説明いたします。
その後、写真測量の基盤となるSfMやMVS、オンライン自己位置推定技術であるVisual SLAM、さらには近年注目されているディープラーニングに基づく環境地図作成技術のNeRFを説明いたします。
本セミナーでは、Pythonプログラムについて取り上げ、コーディングの基本から、Hadoop/Spark等の活用まで、高速化、大容量データの扱いの基本を解説いたします。
本セミナーでは、ライトフィールドの基本的な考え方から、理論的背景、解析方法、最新技術動向まで詳解いたします。
本セミナーでは、CMOSイメージセンサを扱う上で必要な普遍的な基礎技術を解説いたします。
また、イメージセンサ独特の性能とその評価技術についても解説いたします。
本セミナーでは、テラヘルツ波の基礎知識から始まり、電子デバイス/光デバイスの両面から光源・検出器の基本について、また、センシング・イメージングシステムを組む上での必要知識を解説いたします。さらにテラヘルツ波のシステムの早期導入が期待される安全安心分野、医療医薬分野に応用する研究開発事例を中心に紹介し、新規産業に展開するためのキーポイントを解説いたします。
本セミナーでは、CMOSイメージセンサを扱う上で必要な普遍的な基礎技術を解説いたします。
また、イメージセンサ独特の性能とその評価技術についても解説いたします。
本セミナーでは、中小製造現場でいくつかの導入実績をあげた講師が手がけたAI外観検査の取り組みを紹介いたします。
活動事例を通じて得られた、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までの知見を解説いたします。
本セミナーでは、テラヘルツ波の基礎知識から始まり、電子デバイス/光デバイスの両面から光源・検出器の基本について、また、センシング・イメージングシステムを組む上での必要知識を解説いたします。さらにテラヘルツ波のシステムの早期導入が期待される安全安心分野、医療医薬分野に応用する研究開発事例を中心に紹介し、新規産業に展開するためのキーポイントを解説いたします。
本セミナーでは、最近特に必要性が注目されている「説明できるAI」について、深層学習などのブラックボックス機械学習の説明性向上、決定木などのホワイトボックス機械学習の精度向上の方法、次世代AIである進化的機械学習、企業へのAI導入を成功させるコツについて平易に解説いたします。
本セミナーでは、中小製造現場でいくつかの導入実績をあげた講師が手がけたAI外観検査の取り組みを紹介いたします。
活動事例を通じて得られた、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までの知見を解説いたします。
本セミナーでは、3次元的な自己位置推定・環境地図作成のためのコンピュータビジョン技術を基礎から解説いたします。
具体的には特徴点マッチングや画像検索等の画像処理技術及びカメラの透視投影モデル、三角測量、バンドル調整等のコンピュータビジョン技術を説明いたします。
その後、写真測量の基盤となるSfMやMVS、オンライン自己位置推定技術であるVisual SLAM、さらには近年注目されているディープラーニングに基づく環境地図作成技術のNeRFを説明いたします。
本セミナーでは、AI画像認識プロジェクトの進め方、画像情報の集め方、品質保証への対応、具体的なAI画像認識システムの開発例に関する知見について、製造現場での導入実績やAI外観検査の実例を踏まえ、実践的にわかりやすく解説いたします。
本セミナーでは、実環境での雑音の種類から話をスタートし、ディジタル信号処理において、それぞれの雑音に対して、どのような対処策があるかを詳細に説明いたします。
具体的なアルゴリズムを提示し、結果を確認しながら解説しますが、雑音の性質に応じた各種フィルタリング技術から、時変性がある従来対処困難とされていた雑音に対しても有効に働く、フレーム内処理方法やディープニューラルネットワークの利用までをカバーします。
最先端のWave-U-Netやその改善方法なども説明いたします。