技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

時系列データ分析の基礎・モデル化と異常検知・機械学習への応用

時系列データ分析の基礎・モデル化と異常検知・機械学習への応用

~データの扱い方、分析のすすめ方、モデル化と異常検知・将来予測・機械学習への適用~
東京都 開催 会場 開催

概要

本セミナーでは、機械学習を用いた「時系列データ分析」の基礎から、「将来予測」「異常検知」等への応用をわかりやすく解説いたします。

開催日

  • 2020年4月27日(月) 10時30分 17時30分

受講対象者

  • データ解析に携わる技術者
    • 製造業
    • ソフトウェア関連
    • 金融関連
    • 公共機関 等

修得知識

  • 時系列データの特徴を定量化し、数学的に表現 (モデル化) できる
  • 機械学習モデルを用いて、高度な予測や異常検知をプログラミングできる

プログラム

 近年、人工知能や機械学習が注目を集めていますが、技術的な大変化が突然起こったのではなく、過去の研究成果の積み重ねによって深層学習などの新しいモデルが誕生しました。つまりホットな技術を活用するためにも、基礎的な周辺知識は重要です。
 そこで今回のセミナーでは「時系列データ」を対象にし、データの個性を定量化する統計的分析や、数式として表現する時系列モデルを多数紹介します。更にこれらの応用として「将来予測」や「異常検知」に着眼し、より高度な機械学習モデルを取り入れつつ、実務への応用をサポートします。
 本セミナーでは図解による分かり易さを重視しますが、その解説のみに終始せず、フリーソフトPythonによる実践方法も多数紹介します。なお、補足的にフリーソフトRを用いることでPythonが苦手な項目についてサポートします。これらのプログラムは全て配布しますので、復習やお仕事にご活用いただけます。

  1. 時系列データの特徴を調べる (統計的分析)
    1. ランダムか?法則的か?
      1. 確率論的モデルと決定論的モデル
      2. その判別方法 (法則性の可視化)
    2. 過去は未来に影響するか?
      1. 相関性と非独立性 (非線形相関) の違い
      2. 非独立性の確認
        • 相互情報量
        • MIC
      3. 相関性の確認
        • 相関係数
        • 自己相関関数
      4. 疑似相関に注意 (偏相関係数)
      5. 偏自己相関関数
    3. 他から影響を受けるか?
      1. 同時刻の関係 (相関性と非独立性の違い)
      2. 時間遅れを伴う関係 (相関性と因果性の違い)
      3. 相関性の確認 (相互相関関数)
      4. 因果性の確認
        • 移動エントロピー
        • グランジャー因果テスト
  2. 時系列データの変動パターンを数式で表現する (時系列モデル)
    1. ランダムウォーク
      1. 確率的トレンドと確定的トレンド
      2. 定常性と非定常性
      3. 定常化と単位根検定
      4. トレンド成分と季節成分の分解
    2. 平均値 (期待値) の推定
      1. AR (自己回帰) モデル
      2. 過学習を防ぐAIC (赤池情報量基準)
      3. ARMA (自己回帰移動平均) モデル
      4. ARIMA (自己回帰和分移動平均) モデル
      5. SARIMA (季節自己回帰和分移動平均) モデル
      6. 残差診断
    3. 分散値 (リスク) の推定
      1. ARCHモデル
      2. GARCHモデル
      3. ARIMA – GARCHモデル
    4. 将来予測への応用
      1. モンテカルロシミュレーションによる長期予測
      2. 残差の時間構造も考慮する方法
    5. 異常検知への応用
      1. 予測モデルを使う方法
      2. 予測モデルを使わない方法
      3. 異常検知 (ROC曲線)
  3. 機械学習で学習力を強化する (非線形モデル)
    1. 線形モデルと非線形モデルの違い
      1. 重回帰分析から「非線形重回帰分析」へ
      2. 最も手軽なのに高性能な「k近傍法」
      3. 機械学習の失敗につながる「次元の呪い」
      4. 交差確認法 (CV法)
      5. モデルパラメータとハイパーバラメータの違い
    2. ニューラルネットワーク
      1. 単一ニューロンモデルの学習則 (最急勾配法)
      2. ニューラルネットワークの学習則 (誤差逆伝搬法)
      3. 多層ニューラルネットの問題点 (勾配消失問題,過学習)
      4. 深層学習 (ディープラーニング) を可能にしたオートエンコーダ
    3. 決定木
      1. 因果関係が分かりやすいIf?Thenルール
      2. 情報エントロピーを低下させる
    4. 集団学習
      1. 多数決で予測精度を向上させる (集合知)
      2. 予測精度が向上する理由 (多様性予測定理)
      3. いろいろな集団学習
      4. バイアス・バリアンス分解
      5. 集団学習の活用法
        • バギング
        • 勾配ブースティング
        • ランダムフォレスト
    5. 機械学習による異常検知
      1. 各種方法の実装例
    6. 発展的なトピック
      1. 自信度の推計 (コンセンサスレシオ)
      2. 再帰型ニューラルネットワーク (RNN, LSTM)
    • 付録資料
      • PythonとRの連携方法
      • フリーソフトPythonの基本操作ガイド
      • フリーソフトRの基本操作ガイド
    • 質疑応答

講師

  • 鈴木 智也
    茨城大学 工学部 知能システム工学科
    教授

会場

東京流通センター

2F 第5会議室

東京都 大田区 平和島6-1-1
東京流通センターの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,500円 (税別) / 52,250円 (税込)
複数名
: 25,000円 (税別) / 27,500円 (税込)

複数名同時受講の割引特典について

  • 2名様以上でお申込みの場合、
    1名あたり 25,000円(税別) / 27,500円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 47,500円(税別) / 52,250円(税込)
    • 2名様でお申し込みの場合 : 2名で 50,000円(税別) / 55,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 75,000円(税別) / 82,500円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」と記入ください。
  • 他の割引は併用できません。

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

  • 1名様あたり 10,000円(税別) / 11,000円(税込)
  • 企業に属している方(出向または派遣の方も含む)は、対象外です。
  • お申込み者が大学所属名でも企業名義でお支払いの場合、対象外です。
本セミナーは終了いたしました。
講演順序・プログラムは変更となる場合がございます。予めご了承ください。
掲載している受講料は会員価格でございます。
お申し込み後はサイエンス&テクノロジーの会員登録をさせていただき、セミナー等のサービスのご案内を差し上げます。

これから開催される関連セミナー

開始日時
2020/5/29 畳み込みニューラルネットワーク (CNN) を用いたノンリファレンス型画像品質評価 オンライン
2020/5/29 材料開発のためのデータ解析入門 オンライン
2020/6/3 実践 ディープラーニング 一日速習セミナー オンライン
2020/6/5 畳み込みニューラルネットワークの基礎と画像認識への応用・判断根拠の理解 オンライン
2020/6/5 生体情報センシングと製品開発への応用の考え方 東京都
2020/6/9 統計的機械学習の基礎、データ生成モデル、データマイニングとAI 東京都
2020/6/9 OpenCV4を用いた画像処理プログラミング入門 東京都
2020/6/10 音による故障検知および故障予知 オンライン
2020/6/10 分析法バリデーションにおける統計解析の基礎 大阪府
2020/6/11 医療機器QMSに有効な統計手法とサンプルサイズ決定方法 大阪府
2020/6/11 確率論入門の入門 東京都
2020/6/11 金融工学のための数理入門 4日間パック 東京都
2020/6/12 次世代カメラの画像処理 東京都
2020/6/12 主成分分析からはじめる多変量解析 東京都
2020/6/15 物質・材料研究におけるデータ科学の活用:基礎と応用 東京都
2020/6/15 小規模データに対する機械学習、深層学習の適用 東京都
2020/6/16 統計的データ処理のための確率統計・線形代数入門 オンライン
2020/6/17 製造業における「人工知能」の基礎と自動設計・仮想検査・未知の異常検知への応用入門 オンライン
2020/6/17 5G/5G beyondにおけるMassive MIMOとビームフォーミング技術 オンライン
2020/6/19 状態推定アルゴリズム パーティクルフィルタの基礎・応用・実装 東京都

関連する出版物