技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
化学・素材メーカーのデジタルトランスフォーメーションの取り組みが新たな局面に入ってきた。特に、マテリアルズ・インフォマティクス (MI) を導入・検討する企業が増えてきている。従来のコンピュータでは不可能だった大規模、大量の計算を可能にするスーパーコンピュータを活用したりするもので、従来は何百日もかかる計算が数週間に短縮できたり、人間には思いもつかない組成の化学品をデザインできるといった成果が現実味を帯びつつある。
金属、無機、高分子などの材料がMIに利用される。物質、材料、構造、組織における関連性を明確にすることで、所望のパフォーマンスを起点として材料にさかのぼる形で最適化を見出すものとしても期待されている。
また、AI技術と計算力を活かせば、材料開発分野においても、AIは人間を凌駕する能力を発揮する。将来、AIの助けを借りて、従来にないスピードで新たな発見に導くMIが、材料開発の主要な潮流となってくるであろう。
さらに、MI時代では、化学・素材メーカーにとって、それを構成するスーパーコンピュータや量子コンピュータをいかに最適なものにするかということが重要になってくる。長期的にMI向け情報処理システムとして、特に期待されているのが量子コンピュータなのである。
根底の基本原理が同じである量子コンピュータは、素材開発との親和性が高く、既に広く利用されているAI技術にも、新たな可能性が誕生する。現在のAI技術は、機械学習によって学習を可能にしている。しかしながら、物事の文脈上の意味を理解する推論の能力が問われる問題については、古典コンピュータで実行するAIシステムにとっては複雑で処理が難しい。量子コンピュータを使うことで、この種の複雑さを処理できるようになる可能性があるとされている。
これまでの材料探索は、研究者の経験と鋭い直感に依存していた。しかし、MIによって、物質特性をコンピュータ上で高精度に計算した材料データベースやAIなどを活用することにより、材料探索の時間とコストを大幅に削減できる。また、量子コンピュータを材料開発の新たな道具にするだけのスキルを備え始めており、将来、新素材が量子コンピュータによって瞬時に作り出せる可能性が出てくる。
本レポートでは、化学・素材企業等の実務担当者だけでなく、これからAIを使用した計算、MIを活用した材料開発、及び量子コンピュータを使用したい方にも参考になる構成にしている。
メールマガジンに登録なさる方は割引価格にてご購入いただけます。
| 開始日時 | 会場 | 開催方法 | |
|---|---|---|---|
| 2026/1/13 | 異常検知への生成AI、AIエージェント導入と活用の仕方 | オンライン | |
| 2026/1/14 | 研究・実験データの収集、一元化とプラットフォーム構築 | オンライン | |
| 2026/1/14 | 材料研究開発に活かすマテリアルズ・インフォマティクスの基本と研究事例 | オンライン | |
| 2026/1/15 | 量子コンピュータ入門 | オンライン | |
| 2026/1/15 | 逆問題解析による材料の構造、プロセス条件設計 | オンライン | |
| 2026/1/15 | 強化学習の基礎から最新動向と機械制御への応用 | オンライン | |
| 2026/1/15 | Pythonを用いた実験計画法とその最適化 | オンライン | |
| 2026/1/15 | マテリアルズインフォマティクスにおける少ない実験データを活用した物質探索・プロセス最適化の進め方 | オンライン | |
| 2026/1/15 | 材料研究開発に活かすマテリアルズ・インフォマティクスの基本と研究事例 | オンライン | |
| 2026/1/16 | 計算科学シミュレーション技術の基礎と材料設計への応用 | オンライン | |
| 2026/1/16 | 強化学習の基礎から最新動向と機械制御への応用 | オンライン | |
| 2026/1/19 | マテリアルズ・インフォマティクスの実践と低誘電材料開発への応用 | オンライン | |
| 2026/1/19 | EMCの基礎と機械学習・深層学習の応用技術 | オンライン | |
| 2026/1/20 | 全固体電池の世界動向とフッ化物電池の最前線 | オンライン | |
| 2026/1/20 | EMCの基礎と機械学習・深層学習の応用技術 | オンライン | |
| 2026/1/22 | 生成AI/AIエージェントを活用した研究開発業務の自動化・自律化 | オンライン | |
| 2026/1/22 | 異常検知への生成AI、AIエージェント導入と活用の仕方 | オンライン | |
| 2026/1/26 | 機械学習と脳科学におけるベイズ統計 | オンライン | |
| 2026/1/26 | Pythonを用いた実験計画法とその最適化 | オンライン | |
| 2026/1/26 | AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 | オンライン |
| 発行年月 | |
|---|---|
| 2025/3/31 | ベイズ最適化の活用事例 |
| 2024/10/31 | 少ないデータによるAI・機械学習の進め方と精度向上、説明可能なAIの開発 |
| 2024/10/31 | 自然言語処理の導入と活用事例 |
| 2024/1/12 | 世界のマテリアルズ・インフォマティクス 最新業界レポート |
| 2023/12/27 | 実験の自動化・自律化によるR&Dの効率化と運用方法 |
| 2023/6/30 | 生産プロセスにおけるIoT、ローカル5Gの活用 |
| 2023/4/28 | ケモインフォマティクスにおけるデータ収集の最適化と解析手法 |
| 2023/1/31 | 量子技術の実用化と研究開発業務への導入方法 |
| 2022/12/31 | 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集 |
| 2021/10/25 | AIプロセッサー |
| 2021/10/25 | AIプロセッサー (CD-ROM版) |
| 2021/7/30 | マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例 |
| 2021/6/30 | 人工知能を用いた五感・認知機能の可視化とメカニズム解明 |
| 2021/6/28 | AI・MI・計算科学を活用した蓄電池研究開発動向 |
| 2020/12/30 | 実践Rケモ・マテリアル・データサイエンス |
| 2020/8/1 | 材料およびプロセス開発のためのインフォマティクスの基礎と研究開発最前線 |
| 2020/7/31 | 生体情報センシングと人の状態推定への応用 |
| 2020/4/30 | 生体情報計測による感情の可視化技術 |
| 2019/1/31 | マテリアルズ・インフォマティクスによる材料開発と活用集 |
| 2019/1/31 | センサフュージョン技術の開発と応用事例 |