技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

多変量解析・データ処理 超入門

機械学習活用・精度向上のための

多変量解析・データ処理 超入門

~共線性の解消や異常値の検出、モデルの解釈性向上など、精度向上のポイント~
オンライン 開催

概要

本セミナーでは、多変量解析・データ処理の基礎から解説し、特徴抽出や次元削減、データ前処理、相関とパターンの発見など、解析の手順を事例を交えて、分かりやすく解説いたします。

開催日

  • 2024年4月4日(木) 10時30分 16時30分
  • 2024年4月5日(金) 10時30分 16時30分

修得知識

  • 多変量解析の基本コンセプト
  • 特徴抽出や次元削減の手段としての活用法 入門・応用事例
  • データの前処理の手法と応用
  • 相関とパターンの発見の事例
  • 共線性の解消や異常値の検出、モデルの解釈性向上など、精度向上のポイント

プログラム

 近年、様々な分野で人工知能 (AI) の技術に期待が寄せられていますが、AIの情報処理技術をフルに活用し開発を進めていく分野はインフォマティクスと呼ばれています。そしてインフォマティックにおける情報処理技術の中核をなすものが機械学習であり、そのベースとなるのが多変量解析とデータ前処理テクニックです。多変量解析とデータ前処理テクニックについてわかりやすく説明した教科書は非常に少ないです。多くの解説書は難しい線形代数の理論に終始しています。
 しかし、本講座では先ず2変数の小規模データを題材に丁寧に解説してから多変数へと発展させます。理論や数式だけでなく、既に親しみのあるExcelと無料解析ツールのR、Pythonを使った豊富な計算事例を用いた実践的な内容になっています。また、本講座は機械学習・多変量解析を使用するあらゆる分野の方向けの入門講座です。機械学習・多変量解析の面白さと可能性に一人でも多くの方に触れて頂けることを期待しています。

第1日目

(2024年4月4日 10:30〜16:30)

  1. 多変量解析の基本コンセプト
    1. 多変量データとは
    2. 説明変数と目的変数
    3. モデルの複雑性と頑健性
  2. データの前処理
    1. Pythonによる簡単プログラミング
    2. Pandasモジュールによるデータの読み込み
    3. Numpyモジュールによる数値計算
  3. 重回帰分析
    1. 単回帰分析
    2. 最小2乗法
    3. 重回帰分析
    4. 多重共線性と変数選択
  4. 重回帰分析 (演習)
    1. Excelソルバーを使った重回帰分析
    2. Excel行列計算を使った重回帰分析
    3. R/Pythonを使った重回帰分析
  5. ロジスティック回帰解析
    1. 単変数の場合のロジスティック回帰分析
    2. ロジスティック回帰モデル
    3. オッズとオッズ比
    4. 尤度と最尤推定法
  6. ロジスティック回帰分析 (演習)
    1. Excelソルバーを使ったロジスティック回帰分析
    2. R/Pythonを使ったロジスティック回帰分析
  7. 主成分分析
    1. 多次元データの1次元への縮約
    2. Excelソルバーを使った主成分分析
    3. 固有値・固有ベクトルと因子負荷量
    4. 変数間の関係を調べる
  8. 主成分分析 (演習)
    1. Excelソルバーを使った主成分分析
    2. R/Pythonを使った主成分分析
    • 質疑応答

第2日目

(2024年4月5日 10:30〜16:30)

  1. 判別分析
    1. 変数による2群の判別
    2. 線形判別関数
    3. 判別得点と誤判別の確率
  2. 判別分析 (演習)
    1. Excelを使った判別分析
    2. R/Pythonを使った判別分析
  3. クラスター分析
    1. 階層的クラスター分析
    2. 非階層的クラスター分析
  4. クラスター分析 (演習)
    1. Excelを使ったクラスター分析
    2. R/Pythonを使ったクラスター分析
  5. 決定木分析
    1. 回帰木分析
    2. ランダムフォレスト法
  6. 決定木分析 (演習)
    1. Excelを使った決定木分析
    2. R/Pythonを使った決定木分析
  7. 機械学習
    1. 機械学習とは
    2. 分類問題
    3. 回帰問題
    4. 深層学習
  8. 機械学習 (事例紹介)
    1. サポートベクターマシン
  9. おわりに
    • 質疑応答

講師

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 60,000円 (税別) / 66,000円 (税込)
複数名
: 55,000円 (税別) / 60,500円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、1名あたり 55,000円(税別) / 60,500円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 60,000円(税別) / 66,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 110,000円(税別) / 121,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 165,000円(税別) / 181,500円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。

アカデミック割引

  • 1名様あたり 30,000円(税別) / 33,000円(税込)

日本国内に所在しており、以下に該当する方は、アカデミック割引が適用いただけます。

  • 学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院、短期大学、附属病院、高等専門学校および各種学校の教員、生徒
  • 病院などの医療機関・医療関連機関に勤務する医療従事者
  • 文部科学省、経済産業省が設置した独立行政法人に勤務する研究者。理化学研究所、産業技術総合研究所など
  • 公設試験研究機関。地方公共団体に置かれる試験所、研究センター、技術センターなどの機関で、試験研究および企業支援に関する業務に従事する方
  • 支払名義が企業の場合は対象外とさせていただきます。
  • 企業に属し、大学、公的機関に派遣または出向されている方は対象外とさせていただきます。

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は郵送にて前日までにお送りいたします。
  • 開催まで4営業日を過ぎたお申込みの場合、セミナー資料の到着が、開講日に間に合わない可能性がありますこと、ご了承下さい。
    ライブ配信の画面上でスライド資料は表示されますので、セミナー視聴には差し支えございません。
    印刷物は後日お手元に届くことになります。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/12/23 ディープラーニングに基づく外観検査AI技術 オンライン
2024/12/24 NPV (Net Present Value) 計算による医薬品事業性評価の基礎知識 オンライン
2024/12/24 Pythonを使った時系列データ解析入門 オンライン
2024/12/24 エージェンシーMBS投資の基礎 オンライン
2024/12/25 Excelを用いる蒸留の理論と計算 オンライン
2024/12/25 マテリアルズ・インフォマティクスの基礎と応用展開および研究事例 オンライン
2024/12/27 臨床試験を行う上で知っておくべき統計的知識 オンライン
2025/1/7 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2025/1/8 アレニウス式加速試験におけるプロット作成と予測値の取扱い オンライン
2025/1/9 賞味期限設定のためのアレニウス式を用いた加速試験のポイント オンライン
2025/1/10 撹拌装置の設計/スケールアップの基礎とトラブルシューティング オンライン
2025/1/10 NPV (Net Present Value) 計算による医薬品事業性評価の基礎知識 オンライン
2025/1/10 Pythonを使った時系列データ解析入門 オンライン
2025/1/10 分析法バリデーションコース (2日間) オンライン
2025/1/10 品質管理の基礎 (4日間) オンライン
2025/1/10 ICH Q2 (R2) 、Q14をふまえた承認申請時の分析法バリデーションの留意点 オンライン
2025/1/10 品質管理の基礎 (1) オンライン
2025/1/12 分離工学の基礎と装置設計法 オンライン
2025/1/14 プラントのDX化による異常予兆検知、予知保全とその運用 オンライン
2025/1/14 自然言語処理を活用した研究開発、材料分野への適応事例 オンライン