技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

深層学習による画像認識とその判断根拠の可視化 (視覚的説明)

深層学習による画像認識とその判断根拠の可視化 (視覚的説明)

オンライン 開催

開催日

  • 2021年7月6日(火) 10時00分 17時00分

受講対象者

  • 画像処理・物体認識に関連する技術者
    • デジタルカメラ、デジタルビデオカメラ
    • 印刷、カラーコピー機
    • テレビ・ディスプレイ
    • レーザ計測、位置決め
    • 医用画像処理、医療機器制御
    • 衛星画像処理
    • 超解像技術
    • ロボットのカメラ、制御
    • 外観検査装置
    • 非破壊検査装置
    • 車載カメラ
    • 防犯カメラ など

修得知識

  • 画像局所特徴量の基礎
    • SIFT
    • PCA-SIFT
    • GLOH
    • SURF
    • Randomized Trees
    • HOG
    • Haar-like
  • 統計的学習手法の基礎
    • AdaBoost
    • Real AdaBoost
  • 物体検出システムの構築

プログラム

  1. 画像認識の問題設定
    1. 物体検出タスク
    2. 画像分類タスク
    3. シーン理解:セマンティックセグメンテーションタスク
    4. 特定物体認識タスク
  2. ニューラルネットワークと逆誤差伝搬法
    1. ニューラルネットワーク (全結合)
    2. 多層パーセプトロン (MLP) の学習
    3. 勾配降下法
    4. 誤差関数
  3. 畳み込みニューラルネットワーク (CNN)
    1. 機械学習を用いた画像認識
    2. 畳み込み層
    3. 活性化関数
    4. プーリング層
    5. 全結合層
    6. 出力層
    7. CNNの推論過程、学習
    8. 従来の機械学習 VS 深層学習
    9. 学習サンプル数 VS 認識性能
    10. データ拡張
  4. CNNよる画像認識
    1. 一般物体認識 (分類)
      • AlexNet
      • VGG
      • GoogLeNet
      • ResNet
      • SENet
    2. 物体検出
      • Faster R-CNN
      • YOLO
      • SSD
      • M2Det
    3. セグメンテーション
      • SegNet
      • MNet
    4. 回帰
    5. マルチタスク学習
  5. 視覚的説明 (Explainable AI)
    1. 説明可能なAIに向けて:XAI
    2. 視覚的説明:アテンションマップの可視化
    3. Attention Branch Network
    4. Attention mapのファインチューニング
    5. 外観検査への適用
  6. 視覚的説明のロボット応用
    1. 深層強化学習によるロボットの自律移動
    2. Deep Q-Network
    3. 深層強化学習における判断根拠の可視化

講師

  • 藤吉 弘亘
    中部大学 工学部 ロボット理工学科
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 51,700円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。

これから開催される関連セミナー

開始日時 会場 開催方法
2021/6/22 時系列データ分析の基礎と実践 オンライン
2021/6/22 AI画像認識システムの基礎と応用 オンライン
2021/6/24 自動車の自動運転におけるLiDARを用いた移動物体認識技術とその応用 オンライン
2021/6/24 蒸留技術の要点とAIを活用した応用研究 オンライン
2021/6/28 カルマンフィルタの実践 オンライン
2021/6/29 画像認識技術およびディープラーニングの基礎と外観検査への応用 オンライン
2021/6/29 撮像新時代CMOSディジタルイメージング、その機能進化の最新技術動向 オンライン
2021/6/30 少ない学習データでもうまくいく機械学習の適用方法と進め方とそのコツ オンライン
2021/7/5 マルチモーダル情報処理・機械学習に基づき多様な行動情報から人間の性格・スキル・認知状態などの内面を推定する社会的信号処理技術 オンライン
2021/7/6 外観検査の自動化技術と運用ノウハウ オンライン
2021/7/7 ディジタル信号による統計的信号処理の基本原理の理解と応用 オンライン
2021/7/7 Pythonで学ぶAIプログラミング入門 オンライン
2021/7/9 先端計測と機械学習を融合する計測インフォマティクス オンライン
2021/7/12 距離画像センサの測距原理と3Dセンサの応用 オンライン
2021/7/13 AIを活用した材料開発と応用事例 オンライン
2021/7/15 AI関連発明の特許事例および出願戦略のポイント オンライン
2021/7/16 人工知能による異常検知技術とその導入、実用化のポイント オンライン
2021/7/16 データサイエンスの基礎知識をマスターする オンライン
2021/7/16 Transformerの基礎と最新応用動向 オンライン
2021/7/19 1日で分かるVisual SLAMの基礎 オンライン

関連する出版物

発行年月
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2015/8/17 防犯・監視カメラ〔2015年版〕 技術開発実態分析調査報告書
2015/8/17 防犯・監視カメラ〔2015年版〕 技術開発実態分析調査報告書 (CD-ROM版)
2014/3/7 画像処理・画像符号化・画像評価法
2013/8/2 HLAC特徴を用いた学習型汎用認識
2013/6/21 機械学習によるパターン識別と画像認識への応用
2013/6/1 画像診断機器(磁気共鳴) 技術開発実態分析調査報告書 (CD-ROM版)
2013/6/1 画像診断機器(磁気共鳴) 技術開発実態分析調査報告書
2013/3/29 3次元物体認識手法とその応用 (カラー版)
2012/10/25 電子写真装置の定着技術 技術開発実態分析調査報告書 (CD-ROM版)
2012/10/25 電子写真装置の定着技術 技術開発実態分析調査報告書
2012/6/20 画像復元・超解像技術の基礎と応用
2012/4/20 デジカメ主要8社の静止画信号処理技術 技術開発実態分析調査報告書 (CD-ROM版)
2012/4/20 デジカメ主要8社の静止画信号処理技術 技術開発実態分析調査報告書
2011/2/4 入門 画質改善・画像復元・超解像技術
2010/11/15 防犯・監視カメラ 技術開発実態分析調査報告書
2010/11/10 高ダイナミックレンジ画像処理技術とMATLABシミュレーション