技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

Rによる機械学習入門

Rによる機械学習入門

東京都 開催 会場 開催 PC実習付き

開催日

  • 2019年3月29日(金) 10時30分16時30分

修得知識

  • 機械学習の数理的基礎の理解とデータ分析の実践的方法
  • データを整理し特徴を抽出するための手法の理解とR言語による取り扱い
  • 回帰分析や判別分析など実データの解析に役立つ手法の理解とR言語による取り扱い
  • 複雑な統計モデルを用いて予測を行うための統一的方法

プログラム

  1. クラスタリング
    • 問題設定
    • k-平均法
    • スペクトラル・クラスタリング
    • 階層的クラスタリング
  2. 回帰分析
    • 問題設定
    • 線形回帰モデル
    • 最小二乗法
    • リッジ回帰
    • 交差検証法
    • ロバスト回帰
  3. 判別分析
    • 問題設定
    • ロジスティック回帰
    • 確率推定
    • サポートベクトルマシン
    • モデルパラメータの選択
    • 多値サポートベクトルマシン
  4. スパース学習
    • データ解析におけるスパース性
    • L1正則化回帰 (ラッソ)
    • L1&L2正則化回帰 (エラスティック・ネット)
    • フューズド・ラッソ
    • スパース・ロジスティック回帰
  5. 決定木とアンサンブル学習
    • 決定木
    • バギング
    • ランダム・フォレスト
    • ブースティング

講師

  • 金森 敬文
    東京工業大学 情報理工学院 数理・計算科学系
    教授

会場

ちよだプラットフォームスクウェア
東京都 千代田区 神田錦町3-21
ちよだプラットフォームスクウェアの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 55,000円 (税別) / 59,400円 (税込)

持参品

ノートPCをご持参ください。
事前に「R」のインストールをお願いいたします。

  • 適応機種
    • 以下のOSで動作確認済み
      • Windows10 pro version 1803
      • macOS High Sierra version 10.13.6
      • macOS Mojave version 10.14.2
  • Rのインストール (コードは R version 3.5.1 で動作確認済み)
    • Windows: 以下のリンクの上部にある “Download R 3.5.? for Windows” をクリックしてインストール
      • https://cran.r-project.org/bin/windows/base/
    • macOS: 以下のリンクから最新版のR (R-3.5.2.pkg) をダウンロードしてインストール
      • https://cran.r-project.org/bin/macosx/
  • RStudioのインストール (コードは Version 1.1.463 で動作確認済み)
    • 以下のリンクから,使用しているOSの RStudio をダウンロードしてインストール
      • https://www.rstudio.com/products/rstudio/download/#download
  • セミナーで使用するスクリプト
    • https://github.com/kanamori-takafumi/R-seminar-triceps
  • 以下のRパッケージを,RStudio を使ってインストール
    • 手順は次のリンクを参照
      • http://vdlz.xyz/Illust/Chart/RL/RStudio/GetStart/PackageInstall.html
        • carData
        • doParallel
        • glmnet
        • HDPenReg
        • ipred
        • kernlab
        • MASS
        • mclust
        • mlbench
        • randomForest
        • rattle.data
        • rpart
        • rpart.plot
        • xgboost
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/6/25 非臨床試験における統計解析入門 オンライン
2025/6/25 機械学習を用いた画像認識技術の基礎とその応用 オンライン
2025/6/26 最適解を効率的に導く統計的組合せ最適化:実験計画法とExcelでできる人工知能を併用する汎用的インフォマティクス:非線形実験計画法 オンライン
2025/6/27 分析法バリデーションにおける統計解析の基礎 オンライン
2025/6/30 分析法バリデーションにおける統計解析の基礎 オンライン
2025/7/2 深層学習と適応フィルタ オンライン
2025/7/8 ベイズ統計学の基礎と機械学習応用に向けたポイント オンライン
2025/7/8 少ないデータによるAI・機械学習の進め方、活用の仕方 オンライン
2025/7/15 開発の質と効率を向上する汎用的インフォマティクス & 統計的最適化 実践入門 オンライン
2025/7/16 開発の質と効率を向上する汎用的インフォマティクス & 統計的最適化 実践入門 オンライン
2025/7/16 データ分析のための統計入門 オンライン
2025/7/17 製造業の「実務」で使う統計・多変量解析による実践的データ分析 オンライン
2025/7/18 多変量解析入門 オンライン
2025/7/22 第一原理計算と機械学習を活用した材料設計と応用展開 オンライン
2025/7/23 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン
2025/7/23 第一原理計算と機械学習を活用した材料設計と応用展開 オンライン
2025/7/24 外観検査のデジタル化・自動化 オンライン
2025/7/24 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン
2025/7/24 レーザー加工分野における機械学習の活用手法 : 特に少ない実験データ数を用いた場合 オンライン
2025/7/25 レーザー加工分野における機械学習の活用手法 : 特に少ない実験データ数を用いた場合 オンライン

関連する出版物

発行年月
2025/3/31 ベイズ最適化の活用事例
2024/10/31 少ないデータによるAI・機械学習の進め方と精度向上、説明可能なAIの開発
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/12/30 実践Rケモ・マテリアル・データサイエンス
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用
1993/3/1 新しいサーボ制御の基礎と実用化技術