技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

小規模データに対する機械学習の効果的適用法

小規模データに対する機械学習の効果的適用法

オンライン 開催

視聴期間は2024年6月25日〜7月9日を予定しております。
お申し込みは2024年7月5日まで承ります。

概要

本セミナーでは、少ない学習データでも有効に活用できる機械学習の方法を分かりやすく解説いたします。

開催日

  • 2024年7月5日(金) 10時30分 2024年7月9日(火) 16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者
  • 機械学習で課題を抱えている方

修得知識

  • 人工知能 (AI) ・機械学習の現状と課題
  • 深層学習 (ディープラーニング) の原理と課題
  • 少数データを用いた機械学習の手法
  • 業務へのAI導入の秘訣

プログラム

 業務で機械学習、特に深層学習 (ディープラーニング) を利用する際、データが少なくて学習できない問題が発生することがあります。例えば、製品の画像による欠陥検査では、正常例は多数集めることができても、欠陥を含む不良品はごく少数しかない場合がほとんどです。また、そもそもデータ取得に大きな人的・時間的コストが必要な場合もあります。このような場合、結局、機械学習や深層学習の利用をあきらめてしまうことがあり、企業の業務へのAI導入を妨げる大きな要因の一つになっています。
 本セミナーは、そのようにデータが少ない場合でも、有効な学習を行う機械学習の方法を紹介することを目的としています。数式はできるだけ使わず、考え方や原理、要点が分り易い平易な説明を心掛けますので、人工知能や機械学習に対して特に予備知識がない方や、技術職ではない方でも大丈夫です。AIを業務に導入する際の注意点も扱いますし、最後にAIに関する様々な質疑応答やディスカッションを行う「AIよろず相談コーナー」もご用意しましたので、AIにご興味がある方はぜひお気軽にご参加下さい。

  1. 機械学習の現状と課題
    1. 人工知能と機械学習
    2. 機械学習の種類と方法
    3. 深層学習 (ディープラーニング) 概論
    4. 少量データを用いた機械学習とは?
  2. 少量データを用いた機械学習1:関数推定
    1. 最適値探索問題とその解法
    2. ベイズ最適化に基づく関数推定
    3. 遺伝的プログラミング (GP) による関数推定
    4. CGP (Cartesian GP) による関数推定
  3. 少量データを用いた機械学習2:異常検知
    1. 1クラスSVM (Support Vector Machine)
    2. CAE (Convolutional Auto Encoder) による異常検知
    3. 異常検知における学習データの水増し方法
    4. 時系列信号に対する異常検知
  4. 少量データを用いた機械学習3:少量データによる深層学習
    1. CG (Computer Graphics) を用いた機械学習
    2. GAN (Generative Adversarial Network) によるデータ水増し
    3. 転移学習と蒸留
    4. 浸透学習 (Percolative Learning) とその応用
  5. 少量データを用いた機械学習4:進化的機械学習
    1. 進化計算法の原理と特徴
    2. 処理プロセスの自動生成
    3. 分かり易い分類器の自動生成
    4. CS (Classifier System) によるルールの学習
  6. AIの業務への導入方法
    1. AI導入時の注意点
    2. AI人材の育成方法について
  7. まとめ・AIよろず相談コーナー

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 25,000円 (税別) / 27,500円 (税込) (案内をご希望の場合に限ります)

案内割引・複数名同時申込割引について

R&D支援センターからの案内登録をご希望の方は、割引特典を受けられます。
案内および割引をご希望される方は、お申込みの際、「案内の希望 (割引適用)」の欄から案内方法をご選択ください。

「案内の希望」をご選択いただいた場合、1名様 45,000円(税別) / 49,500円(税込) で受講いただけます。
複数名で同時に申込いただいた場合、1名様につき 25,000円(税別) / 27,500円(税込) で受講いただけます。

  • R&D支援センターからの案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 45,000円(税別) / 49,500円(税込)
    • 2名様でお申し込みの場合 : 2名で 50,000円(税別) / 55,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 75,000円(税別) / 82,500円(税込)
  • R&D支援センターからの案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 55,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 100,000円(税別) / 110,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 150,000円(税別) / 165,000円(税込)

アーカイブ配信セミナー

  • 当日のセミナーを、後日にお手元のPCやスマホ・タブレッドなどからご視聴・学習することができます。
  • 配信開始となりましたら、改めてメールでご案内いたします。
  • 視聴サイトにログインしていただき、ご視聴いただきます。
  • 視聴期間は2024年6月25日〜7月9日を予定しております。
    ご視聴いただけなかった場合でも期間延長いたしませんのでご注意ください。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/1/29 特許分析における生成AI/ChatGPT活用と競合他社の弱みの見つけ方 オンライン
2025/1/29 Python実践データ分析/機械学習 オンライン
2025/1/30 マテリアルズ・インフォマティクスの基礎と実践 オンライン
2025/2/4 カルマンフィルタの実践 オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/7 Python を用いたスペクトルデータ解析 (後編) オンライン
2025/2/10 目的に応じた統計手法の選択とデータ解析のポイント オンライン
2025/2/10 生成AI・LLM活用へのデータ整理、システム構築とRAGを用いた検索精度向上 オンライン
2025/2/10 着実にステップアップできる多変量解析講座 オンライン
2025/2/12 実験短縮、研究開発効率化へのMI、生成AI、ロボット導入と活用のポイント オンライン
2025/2/12 マテリアルズ・インフォマティクスの基礎と実践 オンライン
2025/2/12 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/2/17 目的に応じた統計手法の選択とデータ解析のポイント オンライン
2025/2/19 生成AIを活用したデータ分析の基礎とポイント オンライン
2025/2/20 マイオリジナルChatGPTへのカスタマイズの仕方、育成ノウハウ オンライン
2025/2/20 人工知能技術:MTシステム 超入門 オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (後編) オンライン

関連する出版物

発行年月
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書 (CD-ROM版)
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用
2003/6/27 ニューアルゴリズムによる画像処理システム事例解説
2001/9/28 MATLABプログラム事例解説Ⅱ アドバンスド通信路等化