技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

Rによる機械学習入門

Rによる機械学習入門

東京都 開催 会場 開催 PC実習付き

開催日

  • 2019年3月29日(金) 10時30分 16時30分

修得知識

  • 機械学習の数理的基礎の理解とデータ分析の実践的方法
  • データを整理し特徴を抽出するための手法の理解とR言語による取り扱い
  • 回帰分析や判別分析など実データの解析に役立つ手法の理解とR言語による取り扱い
  • 複雑な統計モデルを用いて予測を行うための統一的方法

プログラム

  1. クラスタリング
    • 問題設定
    • k-平均法
    • スペクトラル・クラスタリング
    • 階層的クラスタリング
  2. 回帰分析
    • 問題設定
    • 線形回帰モデル
    • 最小二乗法
    • リッジ回帰
    • 交差検証法
    • ロバスト回帰
  3. 判別分析
    • 問題設定
    • ロジスティック回帰
    • 確率推定
    • サポートベクトルマシン
    • モデルパラメータの選択
    • 多値サポートベクトルマシン
  4. スパース学習
    • データ解析におけるスパース性
    • L1正則化回帰 (ラッソ)
    • L1&L2正則化回帰 (エラスティック・ネット)
    • フューズド・ラッソ
    • スパース・ロジスティック回帰
  5. 決定木とアンサンブル学習
    • 決定木
    • バギング
    • ランダム・フォレスト
    • ブースティング

講師

  • 金森 敬文
    東京工業大学 情報理工学院 数理・計算科学系
    教授

会場

ちよだプラットフォームスクウェア
東京都 千代田区 神田錦町3-21
ちよだプラットフォームスクウェアの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 55,000円 (税別) / 59,400円 (税込)

持参品

ノートPCをご持参ください。
事前に「R」のインストールをお願いいたします。

  • 適応機種
    • 以下のOSで動作確認済み
      • Windows10 pro version 1803
      • macOS High Sierra version 10.13.6
      • macOS Mojave version 10.14.2
  • Rのインストール (コードは R version 3.5.1 で動作確認済み)
    • Windows: 以下のリンクの上部にある “Download R 3.5.? for Windows” をクリックしてインストール
      • https://cran.r-project.org/bin/windows/base/
    • macOS: 以下のリンクから最新版のR (R-3.5.2.pkg) をダウンロードしてインストール
      • https://cran.r-project.org/bin/macosx/
  • RStudioのインストール (コードは Version 1.1.463 で動作確認済み)
    • 以下のリンクから,使用しているOSの RStudio をダウンロードしてインストール
      • https://www.rstudio.com/products/rstudio/download/#download
  • セミナーで使用するスクリプト
    • https://github.com/kanamori-takafumi/R-seminar-triceps
  • 以下のRパッケージを,RStudio を使ってインストール
    • 手順は次のリンクを参照
      • http://vdlz.xyz/Illust/Chart/RL/RStudio/GetStart/PackageInstall.html
        • carData
        • doParallel
        • glmnet
        • HDPenReg
        • ipred
        • kernlab
        • MASS
        • mclust
        • mlbench
        • randomForest
        • rattle.data
        • rpart
        • rpart.plot
        • xgboost
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/2/20 音による故障検知および故障予知 オンライン
2025/2/20 人工知能技術:MTシステム 超入門 オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (後編) オンライン
2025/2/25 AI・LLMの学習時間短縮と性能、回答精度向上 オンライン
2025/2/26 体外診断用医薬品の性能評価に必須の統計解析基礎講座 オンライン
2025/2/26 マテリアルズインフォマティクスの動向と小規模・実験データへの応用 オンライン
2025/2/27 医薬品CMC・製造におけるAI・機械学習・データ活用の課題と導入のポイント オンライン
2025/2/28 ChatGPT4による丸投げ「実験計画法」入門 オンライン
2025/3/3 相関回帰分析、重回帰分析 (2日間) オンライン
2025/3/3 相関回帰分析 オンライン
2025/3/4 マテリアルズインフォマティクスの動向と小規模・実験データへの応用 オンライン
2025/3/5 Pythonプログラムにおける高速化と大容量データの扱い オンライン
2025/3/7 ベイズ統計及びベイズモデリングの基本的な考え方とその実践・活用 オンライン
2025/3/7 エッジAIの実現に向けた課題、展望と産業応用事例 オンライン
2025/3/7 スペクトル・イメージデータへの機械学習の応用 オンライン
2025/3/10 重回帰分析 オンライン
2025/3/11 Pythonプログラムにおける高速化と大容量データの扱い オンライン
2025/3/12 次世代太陽電池 (有機薄膜、ペロブスカイト) の基礎・課題・技術動向 オンライン