技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

小規模データに対する機械学習の効果的適用法

小規模データに対する機械学習の効果的適用法

~関数推定 / 異常検知 / 深層学習 / 進化的機械学習~
オンライン 開催

概要

本セミナーでは、少ない学習データでも有効に活用できる機械学習の方法を分かりやすく解説いたします。

開催日

  • 2025年4月23日(水) 10時30分 16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者
  • 機械学習で課題を抱えている方

修得知識

  • 人工知能 (AI) ・機械学習の現状と課題
  • 深層学習 (ディープラーニング) の原理と課題
  • 少数データを用いた機械学習の手法
  • 業務へのAI導入の秘訣

プログラム

 深層学習やトランスフォーマーなど、過去の大量のデータをニューラルネットワークが学習する機械学習が注目されています。これらの手法は学習対象の大量データが存在する場合は利用できます。一方、業務においては、例えば製品の欠陥検査など、正常のデータは大量に用意できても異常のデータが非常に少ない問題や、そもそも学習データが少ない問題、学習データを収集するコストが高い問題などが頻繁に発生します。このような問題に対しては深層学習をそのまま適用することが困難なため、従来手法を用いるしかないが精度が高くならない、ということで悩んでおられる技術者の方々が多いと感じています。
 本セミナーでは、学習すべきデータが少ない場合の機械学習の効果的な適用法として、学習データを増やす方法、学習データが少なくても構築できる機械学習法などについて解説します。人工知能や機械学習の実情からあまり数式を用いずに平易に解説しますので、機械学習や人工知能に不慣れな初学者の方や専門外の方、技術職ではない方なども気軽に受講することができますので奮ってご参加下さい。

  1. 機械学習の現状と課題
    1. 人工知能と機械学習
    2. 機械学習の種類と方法
    3. 教師あり/なし/半教師あり学習
    4. 深層学習 (ディープラーニング) 概論
    5. 生成系AI・説明可能AI (XAI)
    6. 少量データを用いた機械学習とは?
  2. 少量データを用いた機械学習1:関数推定
    1. ベイズ最適化に基づく関数推定
    2. 遺伝的プログラミング (GP) による関数推定
    3. CGP (Cartesian GP) による関数推定
  3. 少量データを用いた機械学習2:異常検知
    1. 1クラスSVM (Support Vector Machine)
    2. AEなどによる特徴の次元削減に基づく異常検知
    3. 異常検知における学習データの水増し
    4. 時系列信号に対する異常検知
  4. 少量データを用いた機械学習3:少量データによる深層学習
    1. 少数学習のための深層回路の最適化
    2. CG (Computer Graphics) を用いた機械学習
    3. GANや生成系AIによる水増し
    4. 転移学習と蒸留・浸透学習 (Percolative Learning)
  5. 少量データを用いた機械学習4:進化的機械学習
    1. 進化計算法の原理と特徴
    2. 処理プロセスの自動生成
    3. 分かり易い分類器の自動生成
    4. CS (Classifier System) によるルールの学習
  6. AIの業務への導入方法
    1. AI導入時の注意点
    2. AI人材の育成方法について
  7. まとめ

講師

  • 長尾 智晴
    横浜国立大学 大学院 環境情報学府・研究院 情報メディア環境学専攻
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 49,000円 (税別) / 53,900円 (税込)
1口
: 60,000円 (税別) / 66,000円 (税込) (3名まで受講可)

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 Zoomのシステム要件テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/4/16 異常検知・学習データ作成のための生成AI活用 オンライン
2025/4/16 機械学習を用いたスペクトルデータ解析と材料開発への適用 オンライン
2025/4/17 画像認識のためのディープラーニングとモデルの軽量化 オンライン
2025/4/17 スパース推定の基礎、本質の把握・理解と実装応用技術への展開 オンライン
2025/4/22 マテリアルズインフォマティクスの高分子材料開発への応用 オンライン
2025/4/22 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/4/23 ベイズ推定を用いたデータ解析 オンライン
2025/4/25 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/4/25 マテリアルズインフォマティクスの基礎と高分子材料設計における応用事例 オンライン
2025/4/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/4/30 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/5/6 ベイズ推定を用いたデータ解析 オンライン
2025/5/7 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/5/7 生成AIを活用したデータ分析の基礎とポイント オンライン
2025/5/13 異常検知への生成AI活用と判断の標準化、高精度化 オンライン
2025/5/15 化学工学におけるビッグデータ非依存のニューラルネットワーク活用手法 オンライン
2025/5/16 画像認識技術入門 オンライン
2025/5/19 AI分野における特許戦略 オンライン
2025/5/20 マテリアルズインフォマティクス・第一原理計算の基礎と材料研究への応用 オンライン
2025/5/22 実績ありの製造業AI活用ノウハウ オンライン

関連する出版物

発行年月
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書 (CD-ROM版)
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー
2021/10/25 AIプロセッサー (CD-ROM版)
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用
2003/6/27 ニューアルゴリズムによる画像処理システム事例解説
2001/9/28 MATLABプログラム事例解説Ⅱ アドバンスド通信路等化