技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

Rによる時系列データ分析の進め方

Rによる時系列データ分析の進め方

~基礎・モデル化から予測・異常検知・機械学習への応用~
東京都 開催 会場 開催

概要

本セミナーでは、時系列データを対象にし、データの個性を定量化する統計的指標や、数式として表現する時系列モデルを多数紹介いたします。
更に、応用として「将来予測」や「異常検知」に着眼し、より高度な機械学習モデルを取り入れつつ、実務への応用をサポートいたします。

開催日

  • 2017年10月30日(月) 10時00分17時00分

プログラム

 近年、人工知能や機械学習が注目を集めていますが、技術的な大変化が突然起こったのではなく、過去の研究成果の積み重ねによって深層学習などの新しいモデルが誕生しました。つまりホットな技術を活用するためにも、基礎的な周辺知識は重要です。
 そこで、本セミナーでは「時系列データ」を対象にし、データの個性を定量化する統計的指標や、数式として表現する時系列モデルを多数紹介します。更にこれらの応用として「将来予測」や「異常検知」に着眼し、より高度な機械学習モデルを取り入れつつ、実務への応用をサポートします。
 本セミナーでは図解による分かり易さを重視しますが、その解説のみに終始せず、フリーソフトRやPythonによる実践方法も多数紹介します。これらのプログラムは全て配布しますので、復習やご自身の業務にご活用いただけます。

  1. 時系列データの特徴を調べる
    1. ランダムか?法則的か?
      1. 確率論的モデルと決定論的モデル
      2. その判別方法 (法則性の可視化)
    2. 過去は未来に影響するか?
      1. 相関性と非独立性 (非線形相関) の違い
      2. 非独立性の確認 (連検定、BDSテスト、相互情報量)
      3. 相関性の確認 (相関係数、自己相関関数)
      4. 疑似相関に注意 (偏相関係数)
      5. 偏自己相関関数
    3. 他から影響を受けるか?
      1. 同時刻の関係 (相関性と非独立性の違い)
      2. 時間遅れを伴う関係 (相関性と因果性の違い)
      3. 相関性の確認 (相互相関関数)
      4. 因果性の確認 (グランジャー因果テスト、移動エントロピー)
  2. 様々な時系列モデル
    1. 定常モデル
      1. AR (自己回帰) モデル
      2. ARMA (自己回帰移動平均) モデル
      3. ARIMA (自己回帰和分移動平均) モデル
      4. 過学習を防ぐAIC (赤池情報量基準)
      5. 残差診断
    2. 非定常モデル (分散変動モデル)
      1. ARCH モデル
      2. GARCH モデル
      3. AR – GARCH モデル
    3. モンテカルロシミュレーションによる長期予測
    4. 異常検知への応用
  3. 機械学習による時系列データの非線形予測モデル
    1. 線形モデルと非線形の違い
      1. 重回帰分析から「非線形重回帰分析」へ
      2. 最も手軽なのに高性能な「k近傍法」
      3. 機械学習の失敗につながる「次元の呪い」
      4. 交差確認法 (CV法)
    2. ニューラルネットワーク
      1. 期待と失望の歴史
      2. 近傍点の隙間を滑らかに埋める
      3. 深層学習 (ディープラーニング) へ発展
    3. 決定木
      1. 因果関係が分かりやすいIf – Thenルール
      2. 情報エントロピーを低下させる
    4. 集団学習
      1. 多数決で予測精度を向上させる
      2. 予測精度が向上する理由 (集合知定理)
      3. いろいろな集団学習
      4. バイアス・バリアンス分解
      5. バギング、ランダムフォレストの活用事例
  4. 付録資料
    1. Rの基本操作ガイド
    2. Pythonの基本操作ガイド
    3. RとPythonを連携して使うテクニック

講師

  • 鈴木 智也
    茨城大学 工学部 知能システム工学科
    教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 50,760円 (税込)
1口
: 57,000円 (税別) / 61,560円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/2/19 ベイズ統計モデリングの基本的な考え方とモデルの立て方、結果の解釈 オンライン
2026/2/19 体外診断用医薬品の性能評価に必須の統計解析基礎講座 オンライン
2026/2/19 分析法バリデーション超入門講座 オンライン
2026/2/20 ICH新ガイドラインに対応する分析法開発と分析法バリデーションの基礎と実践 東京都 会場・オンライン
2026/2/24 産業設備の保全/管理へのAI・機械学習の活用と実践ノウハウ オンライン
2026/2/24 商品開発のための感性・官能評価用アンケート設計と物性値への落とし込み オンライン
2026/2/24 機械学習原子間ポテンシャル (MLIP) の基礎と実践的活用法 オンライン
2026/2/25 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン
2026/2/25 データ分析のポイントと生成AIの活用 オンライン
2026/2/26 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン
2026/2/26 ヒューマンセンシングの基礎と製品・サービスへの活用法 オンライン
2026/2/26 実務に役立つ統計解析の基本と活用 オンライン
2026/2/26 生成AIによる特許調査・分析の現状と実務への適用 オンライン
2026/2/26 生成AIを活用した研究データ解析と可視化手法 オンライン
2026/2/26 マテリアルズインフォマティクスの動向と少ないデータへの適用事例 オンライン
2026/2/27 時系列データ解析の基礎と進め方のポイント オンライン
2026/2/27 ヒューマンセンシングの基礎と製品・サービスへの活用法 オンライン
2026/2/27 未知の不良や異常も検知する検査・センシング・モニタリングに適した人工知能 オンライン
2026/3/2 サンプリング試験 (抜取検査) の全体像を把握し適切に設計・運用する具体的ノウハウ オンライン
2026/3/2 未知の不良や異常も検知する検査・センシング・モニタリングに適した人工知能 オンライン