技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

機械学習の基礎とマーケティングへの活用

機械学習の基礎とマーケティングへの活用

東京都 開催 会場 開催

概要

本セミナーでは、機械学習の理論をできるだけわかりやすく説明いたします。
適宜Pythonによるサンプルコードや実際の機械学習を利用したアプリやシステム、サービスなどの事例を示しながら解説いたします。

開催日

  • 2017年3月17日(金) 10時30分 16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者
  • 機械学習で課題を抱えている方

プログラム

 機械学習の教科書を見ると、理論やアルゴリズムが数式によって説明されており、このことが理由で機械学習の勉強を挫折される方が多くいる。しかしながら、機械学習の真髄は、“数学を使わなくても”、説明可能である。
 本セミナーでは、機械学習の理論をできるだけわかりやすく説明するため、数式の意味を解説しながら、グラフ等により視覚的な説明を心掛ける。また、適宜Pythonによるサンプルコードや実際の機械学習を利用したアプリやシステム、サービスなどの事例を示しながら、進めていく。

  1. 人工知能 (機械学習) とは
    1. 人工知能と機械学習
    2. なぜ人工知能が注目されるのか?
      1. 機械学習に必要なもの
      2. ビッグデータ
  2. 機械学習の基礎
    1. 機械学習とデータマイニングの違い
    2. 機械学習の種類
      1. 教師あり学習
      2. 教師なし学習
      3. 半教師あり学習
      4. 強化学習
    3. 機械学習に何ができるのか?
      1. 回帰
        • 重回帰分析
      2. 分類
        • パーセプトロン
        • ニューラルネットワーク
      3. クラスタリング
        • k-means
      4. 次元削減
        • 主成分分析
      5. ルールマイニング
        • Apriori
    4. 機械学習手法の性能を評価する
  3. 機械学習の応用
    1. ディープラーニングとは
      1. 特徴量とは
      2. 特徴量抽出の意味する事
    2. 機械学習システムを作るには
      1. Pythonと機械学習ライブラリ
      2. 機械学習を活用する際の注意点
  4. 機械学習のマーケティング分野への活用
    1. 顧客分析
    2. レコメンダーシステム (推薦システム)
      1. 顧客の嗜好を分析する
    3. テキストマイニング
      1. CGM (消費者生成メディア) の分析
      2. Word2Vecによる言葉のデータ化
    4. 最近の研究トピック お1人様 受講申込要領 1口 (1社3名まで) 受講申込要領 セミナー 総合日程 画像認識 セミナー日程 新宣伝 セミナー日程

講師

  • 櫻井 義尚
    明治大学 総合数理学部 ネットワークデザイン学科
    准教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 50,760円 (税込)
1口
: 57,000円 (税別) / 61,560円 (税込) (3名まで受講可)

割引特典について

  • 複数名 同時受講:
    1口 57,000円(税別) / 61,560円(税込) (3名まで受講可能)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/1/20 研究開発部門が行うべきマーケティングの知識と活動 (基本理論編 & 実践編) オンライン
2025/1/20 研究開発部門が行うべきマーケティングの知識と活動 (基本理論編) オンライン
2025/1/20 ベイズ最適化を活用した実験の効率化と開発期間短縮 オンライン
2025/1/20 Pythonを用いてコンピュータビジョンの理論と実践を学ぶ オンライン
2025/1/21 技術者・研究者のための実験計画法入門 オンライン
2025/1/21 MTシステム (MT法) の基礎および異常検知・異常モニタリング・予防保全技術入門 オンライン
2025/1/23 医療機器QMSで有効な統計的手法とサンプルサイズ決定 オンライン
2025/1/23 時系列データ分析 入門 オンライン
2025/1/24 着実にステップアップできる多変量解析講座 オンライン
2025/1/24 成功例・失敗例を踏まえた適切な医薬品売上予測とデータ収集法 オンライン
2025/1/27 研究開発部門が行うべきマーケティングの知識と活動 (実践編) オンライン
2025/1/27 感性工学商品開発プロセスへのAI応用 オンライン
2025/1/27 統計手法の基礎 オンライン
2025/1/28 画像の品質を高精度に評価する方法のノウハウ オンライン
2025/1/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/1/29 説明可能AI (XAI) から人と共に進化・発展するAIへ オンライン
2025/1/29 分析法バリデーションコース (2日間) オンライン
2025/1/29 計算ブラックボックスからの脱却と精度評価の本質に迫る オンライン
2025/1/29 特許分析における生成AI/ChatGPT活用と競合他社の弱みの見つけ方 オンライン
2025/1/29 Python実践データ分析/機械学習 オンライン