技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

機械学習の基礎とマーケティングへの活用

機械学習の基礎とマーケティングへの活用

東京都 開催 会場 開催

概要

本セミナーでは、機械学習の理論をできるだけわかりやすく説明いたします。
適宜Pythonによるサンプルコードや実際の機械学習を利用したアプリやシステム、サービスなどの事例を示しながら解説いたします。

開催日

  • 2017年3月17日(金) 10時30分 16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者
  • 機械学習で課題を抱えている方

プログラム

 機械学習の教科書を見ると、理論やアルゴリズムが数式によって説明されており、このことが理由で機械学習の勉強を挫折される方が多くいる。しかしながら、機械学習の真髄は、“数学を使わなくても”、説明可能である。
 本セミナーでは、機械学習の理論をできるだけわかりやすく説明するため、数式の意味を解説しながら、グラフ等により視覚的な説明を心掛ける。また、適宜Pythonによるサンプルコードや実際の機械学習を利用したアプリやシステム、サービスなどの事例を示しながら、進めていく。

  1. 人工知能 (機械学習) とは
    1. 人工知能と機械学習
    2. なぜ人工知能が注目されるのか?
      1. 機械学習に必要なもの
      2. ビッグデータ
  2. 機械学習の基礎
    1. 機械学習とデータマイニングの違い
    2. 機械学習の種類
      1. 教師あり学習
      2. 教師なし学習
      3. 半教師あり学習
      4. 強化学習
    3. 機械学習に何ができるのか?
      1. 回帰
        • 重回帰分析
      2. 分類
        • パーセプトロン
        • ニューラルネットワーク
      3. クラスタリング
        • k-means
      4. 次元削減
        • 主成分分析
      5. ルールマイニング
        • Apriori
    4. 機械学習手法の性能を評価する
  3. 機械学習の応用
    1. ディープラーニングとは
      1. 特徴量とは
      2. 特徴量抽出の意味する事
    2. 機械学習システムを作るには
      1. Pythonと機械学習ライブラリ
      2. 機械学習を活用する際の注意点
  4. 機械学習のマーケティング分野への活用
    1. 顧客分析
    2. レコメンダーシステム (推薦システム)
      1. 顧客の嗜好を分析する
    3. テキストマイニング
      1. CGM (消費者生成メディア) の分析
      2. Word2Vecによる言葉のデータ化
    4. 最近の研究トピック お1人様 受講申込要領 1口 (1社3名まで) 受講申込要領 セミナー 総合日程 画像認識 セミナー日程 新宣伝 セミナー日程

講師

  • 櫻井 義尚
    明治大学 総合数理学部 ネットワークデザイン学科
    准教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 50,760円 (税込)
1口
: 57,000円 (税別) / 61,560円 (税込) (3名まで受講可)

割引特典について

  • 複数名 同時受講:
    1口 57,000円(税別) / 61,560円(税込) (3名まで受講可能)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/6/6 高付加価値製品の開発に必須の技術者のための実践マーケティングセミナー オンライン
2025/6/6 AI利活用におけるEU AI法の影響と今後の課題 オンライン
2025/6/9 現場で使えるマテリアルズ・インフォマティクス実践講座 オンライン
2025/6/9 時系列データによる将来予測、異常検知への応用 オンライン
2025/6/9 シナリオプランニングをとりいれた市場・製品・事業・技術ロードマップの策定と実行手法 オンライン
2025/6/10 ゼロから始める初心者向けバリデーション オンライン
2025/6/11 研究者・技術者のためのビジネス情報収集 & 資料作成術 オンライン
2025/6/11 技術マーケティングの基礎と実践のポイント オンライン
2025/6/12 Pythonを活用したデータ分析手法 オンライン
2025/6/12 小規模データに対する機械学習の効果的適用法 オンライン
2025/6/12 ISO 13485:2016が求める医療機器の設計開発における統計手法とそのサンプルサイズ決定方法 オンライン
2025/6/12 研究開発・技術部門が行う情報収集とそのセオリー、ノウハウ オンライン
2025/6/12 分子シミュレーションの基礎と高分子材料の研究・開発の効率化への展開 オンライン
2025/6/13 マテリアルズインフォマティクスのためのデータ解析 オンライン
2025/6/13 現場で使えるマテリアルズ・インフォマティクス実践講座 オンライン
2025/6/13 時系列データ分析の基礎と実務への応用 オンライン
2025/6/13 計測インフォマティクスの基礎とスペクトルデータ解析への応用 オンライン
2025/6/13 AI利活用におけるEU AI法の影響と今後の課題 オンライン
2025/6/17 技術マーケティングの基礎と実践のポイント オンライン
2025/6/18 外観検査自動化に向けた画像処理・AI技術活用の課題と導入のポイント オンライン