技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、確率論、時系列解析の基本事項を整理し、状態空間モデルの概要の理解を目指します。
特に線形・ガウス型の状態空間モデルで使われるカルマンフィルタのアルゴリズムを、予測分布、予測尤度、フィルタ分布、平滑化分布の観点から整理いたします。
本セミナーでは、まず、線形カルマンフィルタのアルゴリズムを紹介し、数値例を通してカルマンフィルタの仕組みについて学習します。続いて、代表的な非線形カルマンフィルタである拡張カルマンフィルタ (EKF) と無香料カルマンフィルタ (UKF) のアルゴリズムを説明し、非線形カルマンフィルタを用いた状態とパラメータの同時推定を導入します。また、カルマンフィルタの数値的不安定性について述べ、その問題点に対処するUD分解フィルタを導入します。さらに、カルマンフィルタの2つの応用例を紹介いたします。
本セミナーでは、実環境での雑音の種類から話をスタートし、ディジタル信号処理において、それぞれの雑音に対して、どのような対処策があるかを詳細に説明いたします。
具体的なアルゴリズムを提示し、結果を確認しながら解説しますが、雑音の性質に応じた各種フィルタリング技術から、時変性がある従来対処困難とされていた雑音に対しても有効に働く、フレーム内処理方法やディープニューラルネットワークの利用までをカバーします。
最先端のWave-U-Netやその改善方法なども説明いたします。
運転支援システムから更に発展した自動運転を迎えるにあたり、走行環境を認識するためのセンシング技術は、より高い性能が求められ、ますます重要になります。
本セミナーでは、単独のセンシングを補間するセンサフュージョン技術を、画像処理技術と関連しながら解説します。
本セミナーでは、カルマンフィルタの基礎理論について詳細に解説します。センシング、制御、あるいは機械学習などのAI の分野とカルマンフィルタの関係についても述べます。
本セミナーでは、カルマンフィルタについて基礎から、できるだけわかりやすく解説いたします。
また、応用例としてリチウムイオン二次電池の充電率推定への応用について解説いたします。
本セミナーでは、実環境での雑音の種類から話をスタートし、ディジタル信号処理において、それぞれの雑音に対して、どのような対処策があるかを詳細に説明いたします。
具体的なアルゴリズムを提示し、結果を確認しながら解説しますが、雑音の性質に応じた各種フィルタリング技術から、時変性がある従来対処困難とされていた雑音に対しても有効に働く、フレーム内処理方法やディープニューラルネットワークの利用までをカバーします。
最先端のWave-U-Netやその改善方法なども説明いたします。
運転支援システムから更に発展した自動運転を迎えるにあたり、走行環境を認識するためのセンシング技術は、より高い性能が求められ、ますます重要になります。
本セミナーでは、単独のセンシングを補間するセンサフュージョン技術を、画像処理技術と関連しながら解説します。
本セミナーでは、GNSSデータとIMUセンサやSPEEDセンサとのの統合手法についてできるだけ平易に紹介いたします。
GNSSはトンネル内や高層ビルが密集した場所や、高架下では残念ながら機能しません。その意味でIMUやSPEEDセンサとのカップリングは非常に相性がよいと考えられます。
本セミナーでは、リチウムイオン蓄電池の基本特性とモデル化手法および、リチウムイオン電池の残量推定、劣化診断、性能評価技術とリユースビジネスについて解説いたします。
本セミナーでは、まず、線形カルマンフィルタのアルゴリズムを紹介し、数値例を通してカルマンフィルタの仕組みについて学習します。続いて、代表的な非線形カルマンフィルタである拡張カルマンフィルタ (EKF) と無香料カルマンフィルタ (UKF) のアルゴリズムを説明し、非線形カルマンフィルタを用いた状態とパラメータの同時推定を導入します。また、カルマンフィルタの数値的不安定性について述べ、その問題点に対処するUD分解フィルタを導入します。さらに、カルマンフィルタの2つの応用例を紹介いたします。
本セミナーでは、カルマンフィルタの基礎理論について詳細に解説します。センシング、制御、あるいは機械学習などのAI の分野とカルマンフィルタの関係についても述べます。
本セミナーでは、カルマンフィルタについて基礎から、できるだけわかりやすく解説いたします。
また、応用例としてリチウムイオン二次電池の充電率推定への応用について解説いたします。
本セミナーでは、GNSSデータとIMUセンサやSPEEDセンサとのの統合手法についてできるだけ平易に紹介いたします。
GNSSはトンネル内や高層ビルが密集した場所や、高架下では残念ながら機能しません。その意味でIMUやSPEEDセンサとのカップリングは非常に相性がよいと考えられます。
本セミナーでは、まず、線形カルマンフィルタのアルゴリズムを紹介し、数値例を通してカルマンフィルタの仕組みについて学習します。続いて、代表的な非線形カルマンフィルタである拡張カルマンフィルタ (EKF) と無香料カルマンフィルタ (UKF) のアルゴリズムを説明し、非線形カルマンフィルタを用いた状態とパラメータの同時推定を導入します。また、カルマンフィルタの数値的不安定性について述べ、その問題点に対処するUD分解フィルタを導入します。さらに、カルマンフィルタの2つの応用例を紹介いたします。
本セミナーでは、リチウムイオン蓄電池の基本特性とモデル化手法および、リチウムイオン電池の残量推定、劣化診断、性能評価技術とリユースビジネスについて解説いたします。
本セミナーでは、カルマンフィルタの基礎理論について詳細に解説します。センシング、制御、あるいは機械学習などのAI の分野とカルマンフィルタの関係についても述べます。
本セミナーでは、リチウムイオン蓄電池の基本特性と、そのモデル化手法を理解し、効果的な残量予測や劣化予測に関する基本的な方法を習得することを目的としております。
蓄電池残量に関しては、様々な提案手法を概説し、蓄電池の温度特性や劣化特性も含めて正しく測定するための手法とMATLABを使った実装例をお話しいたします。
また、蓄電池劣化に関しても、基本的な、劣化のメカニズムを理解した上で、その診断方法について解説いたします。
さらに、劣化診断や寿命予測に関する最新技術についても紹介いたします。
近年、データ同化の設計開発現場での活用が期待されております。
本セミナーでは、現実世界の運用稼働条件とバーチャル空間でのシミュレーションの隔たりを低減し、解析の精度向上・不確定性の定量化・低減を実現するデータ同化技術について取り上げ、データ同化の基礎から、具体的なアルゴリズム、適用事例、さらには発展的な話題までを解説いたします。
本セミナーでは、リチウムイオン蓄電池の基本特性と、そのモデル化手法を理解し、効果的な残量予測や劣化予測に関する基本的な方法を習得することを目的としております。
蓄電池残量に関しては、様々な提案手法を概説し、蓄電池の温度特性や劣化特性も含めて正しく測定するための手法とMATLABを使った実装例をお話しいたします。
また、蓄電池劣化に関しても、基本的な、劣化のメカニズムを理解した上で、その診断方法について解説いたします。
さらに、劣化診断や寿命予測に関する最新技術についても紹介いたします。