技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、R&D部門のデータ共有・利活用の実情、属人的データ共有状況が生み出される原因、属人的データ共有状況が引き起こす問題、報告書の共有で期待して良いこと・良くないこと、機械学習などのMIの特性と注意すべき点、R&D部門においてデータベースと機械学習を連携させていく場合の注意点、データベース導入時・運用時に陥りがちな落とし穴とそれを防ぐ方策について、詳しく解説いたします。
IoTやAIの普及により、製造工程以降のデータ利活用は急激に進展しています。一方、公的研究機関であれ、民間企業であれ、R&D部門におけるデータの取り扱いは属人的なままであり、研究の信頼性が阻害されたり、効果的なデータの利活用がほとんど進んでいないのが実態です。R&D部門は技術の源泉であり、データを精緻に管理して効果的に利活用する、つまりデータ分析・AI化を行うことは、今後の競争力にとって不可欠です。
本講演では、まず、R&D部門のデータ共有、利活用の実情をお話しさせていただき、データ共有、利活用が進まない状況がなぜ発生してしまうのか?そのような状況にはどのような問題がはらんでいるのか?、AI、機械学習を実際の実験研究にどのように組み入れていくべきか?に関して、説明をさせていただきます。最後に、データベースと機械学習の連携、運用を維持、拡張させていくときの課題に関して、具体例をもとに陥りがちな落とし穴とそれらの回避方法に関して解説させていただきます。
複数名で同時に申込いただいた場合、1名様につき 40,000円(税別) / 44,000円(税込) で受講いただけます。
発行年月 | |
---|---|
2020/8/11 | 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート |
2020/8/1 | 材料およびプロセス開発のためのインフォマティクスの基礎と研究開発最前線 |
2019/1/31 | マテリアルズ・インフォマティクスによる材料開発と活用集 |
2018/12/27 | R&D部門の“働き方改革”とその進め方 |
2018/9/28 | コア技術を活用した新規事業テーマの発掘、進め方 |
2012/2/14 | LIMS導入に関する導入の留意点セミナー |
2011/12/14 | QCラボにおける厚生労働省「コンピュータ化システム適正管理GL」対応セミナー |
2011/7/5 | 分析機器やLIMSのバリデーションとER/ES指針 |