技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

AI、機械学習と従来型研究開発の現実的な組み合わせ方法

蓄積データのデータ分析・活用のための

AI、機械学習と従来型研究開発の現実的な組み合わせ方法

~データベースの構築と機械学習との連携・運用~
オンライン 開催
  • ライブ配信セミナーには、特典としてアーカイブ配信が付きます。
  • アーカイブ配信の視聴期間は2025年4月25日〜5月1日を予定しております。
  • ライブ配信を受講しない場合は、「アーカイブ配信」をご選択ください。

概要

本セミナーでは、R&D部門のデータ共有・利活用の実情、属人的データ共有状況が生み出される原因、属人的データ共有状況が引き起こす問題、報告書の共有で期待して良いこと・良くないこと、機械学習などのMIの特性と注意すべき点、R&D部門においてデータベースと機械学習を連携させていく場合の注意点、データベース導入時・運用時に陥りがちな落とし穴とそれを防ぐ方策について、詳しく解説いたします。

開催日

  • 2025年4月18日(金) 10時00分 16時00分

受講対象者

  • 機械学習などAIツール環境は整備できたが、実運用ベースにのせるのに困っている方
  • データ共有、利活用で課題を抱えている方
  • 蓄積データのデータ分析でお困りの方
  • 自社及び他の一般的なR&D部門のデータ共有、利用、活用状況を知りたい方
  • R&D部門のデータに対して、AIを活用したい、させたいと考えられている方
  • R&D部門のデータの利用、活用を推進することのメリットを具体的に知りたい方

修得知識

  • R&D部門のデータ共有、利活用の実情
  • 属人的データ共有状況が生み出される原因
  • 属人的データ共有状況が引き起こす問題
  • 報告書の共有で期待して良いこと、良くないこと
  • 機械学習などのMIの特性と注意すべき点
  • 機械学習などのMIの研究への組み込み方法
  • R&D部門におけるデータ蓄積基盤としてデータベースがなぜ必要か?
  • R&D部門においてデータベースと機械学習を連携させていく場合の注意点
  • データベース導入時に陥りがちな落とし穴とそれを防ぐ方策
  • データベース運用時に陥りがちな落とし穴とそれを防ぐ方策

プログラム

 IoTやAIの普及により、製造工程以降のデータ利活用は急激に進展しています。一方、公的研究機関であれ、民間企業であれ、R&D部門におけるデータの取り扱いは属人的なままであり、研究の信頼性が阻害されたり、効果的なデータの利活用がほとんど進んでいないのが実態です。R&D部門は技術の源泉であり、データを精緻に管理して効果的に利活用する、つまりデータ分析・AI化を行うことは、今後の競争力にとって不可欠です。
 本講演では、まず、R&D部門のデータ共有、利活用の実情をお話しさせていただき、データ共有、利活用が進まない状況がなぜ発生してしまうのか?そのような状況にはどのような問題がはらんでいるのか?、AI、機械学習を実際の実験研究にどのように組み入れていくべきか?に関して、説明をさせていただきます。最後に、データベースと機械学習の連携、運用を維持、拡張させていくときの課題に関して、具体例をもとに陥りがちな落とし穴とそれらの回避方法に関して解説させていただきます。

  1. はじめに
    • 講演者のR&D実績とデータ共有、利活用の取り組みについて
  2. R&D部門のデータ共有の実情
    1. R&D部門のデータ蓄積の実情
    2. 属人的データ蓄積状況が生み出される原因
    3. 属人的データ蓄積状況が引き起こす問題
  3. データ共有はどう実現し、何が期待できるか?
    1. 属人的データ蓄積状況を脱するために必要な方策
    2. 報告書の共有で期待して良いこと、良くないこと
    3. データ共有で研究の何が改善できるのか?
  4. データ探査、分析を意識したデータ蓄積方法とその運用
    1. データ探査を意識したデータ蓄積方法
    2. データ分析は、どのようにして行うのか?
    3. データ共有、利活用状況を改善するために必要なプロジェクトチームの作り方
    4. プロジェクトメンバーに求められる資質
  5. AI、機械学習を実際の実験研究にどのように組み入れていくべきか?
    1. 機械学習などのMIの特性と注意すべき点
    2. 機械学習などのMIを研究へ組み込む方法
  6. データベースと機械学習の連携、運用を維持、拡張させていくときの課題と対策
    1. R&D部門におけるデータ蓄積基盤としてデータベースがなぜ必要か?
    2. データベースと機械学習を連携させていく場合の注意点
    3. データ共有システム導入時に陥りがちな落とし穴とそれを防ぐ方策
    4. データ共有システム運用後陥りがちな落とし穴とそれを防ぐ方策
  7. 質疑応答

講師

  • 上島 豊
    株式会社キャトルアイ・サイエンス
    代表取締役

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 45,000円 (税別) / 49,500円 (税込)
複数名
: 40,000円 (税別) / 44,000円 (税込)

複数名同時申込割引について

複数名で同時に申込いただいた場合、1名様につき 40,000円(税別) / 44,000円(税込) で受講いただけます。

  • 1名様でお申し込みの場合 : 1名で 45,000円(税別) / 49,500円(税込)
  • 2名様でお申し込みの場合 : 2名で 80,000円(税別) / 88,000円(税込)
  • 3名様でお申し込みの場合 : 3名で 120,000円(税別) / 132,000円(税込)

ライブ配信対応セミナー / アーカイブ配信対応セミナー

  • 「Zoom」を使ったライブ配信またはアーカイブ配信セミナーのいずれかをご選択いただけます。
  • お申し込み前に、 Zoomのシステム要件テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は、PDFファイルを配布予定です。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。

ライブ配信セミナーをご希望の場合

  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。

アーカイブ配信セミナーをご希望の場合

  • 当日のセミナーを、後日にお手元のPCやスマホ・タブレッドなどからご視聴・学習することができます。
  • 配信開始となりましたら、改めてメールでご案内いたします。
  • 視聴サイトにログインしていただき、ご視聴いただきます。
  • 視聴期間は2025年4月25日〜5月1日を予定しております。
    ご視聴いただけなかった場合でも期間延長いたしませんのでご注意ください。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/5/15 拒絶理由通知分析、対応作成への生成AI活用 オンライン
2025/5/15 化学工学におけるビッグデータ非依存のニューラルネットワーク活用手法 オンライン
2025/5/16 実験の実務: 効率的、確実に目的を達成できる実験内容の考え方 オンライン
2025/5/16 シナリオプランニングによる未来洞察と戦略構想のポイント オンライン
2025/5/16 技術資産の戦略的活用 オンライン
2025/5/16 品質管理の基礎 (4) オンライン
2025/5/19 研究開発における生成AI導入の費用対効果の算出方法、経営への訴求ポイント オンライン
2025/5/19 AI分野における特許戦略 オンライン
2025/5/19 高容量リチウムイオン二次電池正極材の材料設計 オンライン
2025/5/20 コア技術の明確な定義、設定プロセスと継続的な育成・強化手法 オンライン
2025/5/20 設計プロセスでの生成AIの活用法 オンライン
2025/5/20 マテリアルズインフォマティクス・第一原理計算の基礎と材料研究への応用 オンライン
2025/5/21 ステージゲート法によるR&D進捗管理とGo/Stop判断 オンライン
2025/5/21 研究・開発現場のための戦略的技術マネジメントの実践と新価値の創出 オンライン
2025/5/21 新価値創造のための技術棚卸の進め方と生成AI活用 オンライン
2025/5/21 技術者、研究者のための実践的なタイムマネジメント (時間管理) オンライン
2025/5/21 生成AI×多変量解析:革新的学習と実践 オンライン
2025/5/21 ものづくりデジタルツインの基礎と要素技術および導入・応用のポイント オンライン
2025/5/22 実績ありの製造業AI活用ノウハウ オンライン
2025/5/22 ダイコーティングの基礎理論とトラブル対策 オンライン