技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

Pythonによる実務に役立つデータサイエンス・AIのためのデータ前処理

Pythonによる実務に役立つデータサイエンス・AIのためのデータ前処理

~Google Colaboratoryで動作するサンプルコードによる演習~
オンライン 開催

視聴期間は2024年9月13日〜24日を予定しております。
お申し込みは2024年9月20日まで承ります。

概要

本セミナーでは、機械学習の成果を左右する「データ前処理」について取り上げ、その基本から、高度な前処理、自然言語・画像・音声におけるすぐに使える前処理技術、うまく対処できない時のための最新技術の調べ方のコツなどについて、PCを用いた演習を含めて実践的な内容を解説いたします。

開催日

  • 2024年9月20日(金) 10時30分 2024年9月24日(火) 16時30分

修得知識

  • Google Colaboratoryを用いたデータ分析
  • Pythonを用いたデータの前処理
  • 数値、テキスト、画像、音声データの前処理
  • 最近のAIでは常識になっている技術
    • ファインチューニング
    • データ拡張
    • 大規模言語モデルなど

プログラム

 本セミナーでは、データサイエンスや人工知能のためのデータ分析において欠かせないデータの前処理技術についてレクチャー、実演をメインに行います。自らGoogle Colaboratory環境上でサンプルコードを動かすことで実践的な前処理技術を習得することが目標です。
 Google Colaboratory上にはじめからインストールされている数値計算、機械学習ライブラリ、深層学習フレームワークは、大変便利で実用的です。しかし、市販の参考書を片手に整理整頓された教科書的なデータを分析するだけでデータサイエンスやAIを理解した気になっていると、実際の業務において、一筋縄ではいかないデータに直面した時、何をどうしてよいのかわからずに思考停止に陥るのではないでしょうか。データサイエンスやAIを一から学びたい人、仕事で使用するためにとにかく手っ取り早く手を動かしながらコツをつかみたい人、ご心配はご無用です。
 このセミナーでは、困ったときに参考になる実用的な前処理用のサンプルコードを豊富に準備しています。また、講師の研究経験から、データ前処理だけでなく有用なデータ収集の困難さやその極意、上手くいかないときのチューニングのノウハウなども伝授したいと思います。

  1. はじめに「AI・機械学習における前処理」
  2. 準備
    1. Google ColaboratoryによるPython実行環境と便利な使い方
    2. NumPy, pandas による数値データの処理
    3. scikit-learnを用いた簡単な機械学習
    4. matplotlibによる可視化の基本
    5. Tensorflow, Keras を用いた深層学習の基本
  3. 基本的な前処理
    1. 標準化と正規化、ビニング
    2. 外れ値や欠損値にどのように対処するか
  4. 特徴選択・次元削減と可視化
    1. 機械学習を使わない統計的な方法 … フィルタ法
    2. 機械学習による効果的な方法 … ラッパ法
    3. 機械学習アルゴリズムに組み込んで利用する … 正則化
    4. 線形次元削減と非線形次元削減
  5. 高度な前処理
    1. カテゴリカルデータから数値データへの変換
    2. バランスの悪いデータにいかに対処するか
    3. 時系列データ処理の基本
  6. テキストデータの前処理
    1. テキスト抽出、分かち書きと形態素解析
    2. 単語分散表現、トピックモデリング
    3. ニューラルネットワークによる文書分類
    4. 最新の言語モデル動向
  7. 画像データ、音声・音楽データにおける前処理
    1. 畳み込みニューラルネットワークの基本
    2. データ不足をデータ拡張で補う
    3. ファインチューニングによる画像分類モデルの構築
    4. 音声・音楽データの基本と前処理手法
    • 質疑応答

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 25,000円 (税別) / 27,500円 (税込) (案内をご希望の場合に限ります)

案内割引・複数名同時申込割引について

R&D支援センターからの案内登録をご希望の方は、割引特典を受けられます。
案内および割引をご希望される方は、お申込みの際、「案内の希望 (割引適用)」の欄から案内方法をご選択ください。

「案内の希望」をご選択いただいた場合、1名様 40,000円(税別) / 44,000円(税込) で受講いただけます。
複数名で同時に申込いただいた場合、1名様につき 25,000円(税別) / 27,500円(税込) で受講いただけます。

  • R&D支援センターからの案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 40,000円(税別) / 44,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 50,000円(税別) / 55,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 75,000円(税別) / 82,500円(税込)
  • R&D支援センターからの案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 55,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 100,000円(税別) / 110,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 150,000円(税別) / 165,000円(税込)

アーカイブ配信セミナー

  • 当日のセミナーを、後日にお手元のPCやスマホ・タブレッドなどからご視聴・学習することができます。
  • 配信開始となりましたら、改めてメールでご案内いたします。
  • 視聴サイトにログインしていただき、ご視聴いただきます。
  • 視聴期間は2024年9月13日〜24日を予定しております。
    ご視聴いただけなかった場合でも期間延長いたしませんのでご注意ください。
  • セミナー資料は別途、送付いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/11/11 機械学習による適応的実験計画 オンライン
2024/11/15 Pythonによる機械学習の基礎と異常検知への適用、実装ポイント オンライン
2024/11/15 マテリアルズ・インフォマティクス入門 オンライン
2024/11/18 Pythonを用いてコンピュータビジョンの理論と実践を学ぶ オンライン
2024/11/20 深層学習と適応フィルタ オンライン
2024/11/21 ディープニューラルネットワークモデルとMTシステムの基礎・学習データ最小化・ エンジニアリング応用入門 オンライン
2024/11/21 画像認識技術入門 オンライン
2024/11/22 スモールデータ解析の方法と実問題解決への応用 オンライン
2024/11/25 Pythonによる機械学習の基礎と異常検知への適用、実装ポイント オンライン
2024/11/26 Pythonによるデータ解析の基礎と実務への応用 オンライン
2024/11/27 ディープニューラルネットワークモデルとMTシステムの基礎・学習データ最小化・ エンジニアリング応用入門 オンライン
2024/11/27 AI・ロボットを活用した自律駆動型材料開発の最新動向と課題・展望 オンライン
2024/11/28 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/11/28 “データサイエンス入門”の入門 オンライン
2024/11/28 音・画像情報処理技術の基礎と認識・検査システムへの応用 オンライン
2024/11/29 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/2 カルマンフィルタの実践 オンライン
2024/12/3 ルールベースと機械学習ベースの画像認識技術 オンライン
2024/12/4 機械学習に基づいた不確実環境下における適応的実験計画 オンライン
2024/12/9 Pythonによるデータ解析の基礎と実務への応用 オンライン

関連する出版物