技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

Pythonを使った時系列データ分析

Pythonを使った時系列データ分析

~基礎・モデル化から予測・異常検知・機械学習への応用~
東京都 開催

概要

本セミナーでは、時系列データを対象にし、データの個性を定量化する統計的指標や、数式として表現する時系列モデルを多数紹介いたします。更に、応用として「将来予測」や「異常検知」に着眼し、より高度な機械学習モデルを取り入れつつ、実務への応用をサポートいたします。

開催日

  • 2019年10月28日(月) 10時00分 17時00分

プログラム

 近年、人工知能や機械学習が注目を集めていますが、技術的な大変化が突然起こったのではなく、過去の研究成果の積み重ねによって深層学習などの新しいモデルが誕生しました。つまりホットな技術を活用するためにも、基礎的な周辺知識は重要です。そこで、本セミナーでは「時系列データ」を対象にし、データの個性を定量化する統計的分析や、数式として表現する時系列モデルを多数紹介します。更にこれらの応用として「将来予測」や「異常検知」に着眼し、より高度な機械学習モデルを取り入れつつ、実務への応用をサポートします。
 本セミナーでは図解による分かり易さを重視しますが、その解説のみに終始せず、フリーソフトPythonによる実践方法も多数紹介します。なお、補足的にフリーソフトRも用いることでPythonが苦手な項目についてサポートします。これらのプログラムは全て配布しますので、復習やご自身の業務にご活用いただけます。

  1. 時系列データの特徴を調べる (統計的分析)
    1. ランダムか?法則的か?
      1. 確率論的モデルと決定論的モデル
      2. その判別方法 (法則性の可視化)
    2. 過去は未来に影響するか?
      1. 相関性と非独立性 (非線形相関) の違い
      2. 非独立性の確認 (連検定、BDSテスト、相互情報量)
      3. 相関性の確認 (相関係数、自己相関関数)
      4. 疑似相関に注意 (偏相関係数)
      5. 偏自己相関関数
    3. 他から影響を受けるか?
      1. 同時刻の関係 (相関性と非独立性の違い)
      2. 時間遅れを伴う関係 (相関性と因果性の違い)
      3. 相関性の確認 (相互相関関数)
      4. 因果性の確認 (移動エントロピー、グランジャー因果テスト)
  2. 時系列データの変動パターンを数式で表現する (時系列モデル)
    1. ランダムウォーク
      1. 確率的トレンドと確定的トレンド
      2. 定常性と非定常性
      3. 定常化と単位根検定
      4. トレンド成分と季節成分の分解
    2. 平均値 (期待値) の推定
      1. AR (自己回帰) モデル
      2. 過学習を防ぐAIC (赤池情報量基準)
      3. ARMA (自己回帰移動平均) モデル
      4. ARIMA (自己回帰和分移動平均) モデル
      5. SARIMA (季節自己回帰和分移動平均) モデル
      6. 残差診断
    3. 分散値 (リスク) の推定
      1. ARCHモデル
      2. GARCHモデル
      3. ARIMA – GARCHモデル
    4. 将来予測への応用
      1. モンテカルロシミュレーションによる長期予測
      2. 残差の時間構造も考慮する方法
    5. 異常検知への応用
      1. 予測モデルを使う方法
      2. 予測モデルを使わない方法
  3. 機械学習で学習力を強化する (非線形モデル)
    1. 線形モデルと非線形モデルの違い
      1. 重回帰分析から「非線形重回帰分析」へ
      2. 最も手軽なのに高性能な「k近傍法」
      3. 機械学習の失敗につながる「次元の呪い」
      4. 交差確認法 (CV法)
      5. モデルパラメータとハイパーバラメータの違い
    2. ニューラルネットワーク
      1. 単一ニューロンモデルの学習則 (最急勾配法)
      2. ニューラルネットワークの学習則 (逆誤差伝搬法)
      3. 多層ニューラルネットの問題点 (勾配消失問題、過学習)
      4. 深層学習 (ディープラーニング) を可能にしたオートエンコーダ
    3. 決定木
      1. 因果関係が分かりやすいIf – Thenルール
      2. 情報エントロピーを低下させる
    4. 集団学習
      1. 多数決で予測精度を向上させる
      2. 予測精度が向上する理由 (集合知定理)
      3. いろいろな集団学習
      4. バイアス・バリアンス分解
      5. 集団学習の活用事例 (バギング、 ランダムフォレスト、 勾配ブースティング)
    5. 機械学習による異常検知
      1. k近傍法の場合
      2. 決定木の場合
      3. ニューラルネットワークの場合
    • 付録資料
      • Pythonの基本操作ガイド
      • Rの基本操作ガイド
      • PythonとRを連携して使うテクニック

講師

  • 鈴木 智也
    茨城大学 工学部 知能システム工学科
    教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 51,700円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時
2020/2/25 カルマンフィルタの実践 東京都
2020/2/25 統計処理の進め方とデータ解析の手法、実践的活用 東京都
2020/2/27 マテリアルズ・インフォマティクスのためのデータベース構築と記述子設計 東京都
2020/2/27 統計の基礎と分析法バリデーションへの応用 2日コース 東京都
2020/2/27 自動車の自動運転におけるLiDARを用いた移動物体認識技術とその応用 東京都
2020/2/28 実習セミナー Pythonで学ぶ機械学習と異常検知への応用 東京都
2020/3/2 機械学習による論文・特許文書解析と技術/市場動向の抽出 東京都
2020/3/2 小規模データセットのための実践的ディープラーニング 東京都
2020/3/3 人工知能による画像の品質評価と製品開発への応用 東京都
2020/3/5 BOM、3D-CAD、CAE、AIを活用した設計の効率化・高度化技術 東京都
2020/3/5 PythonとExcelで理解するデータ分析入門 東京都
2020/3/5 ディープラーニングの基礎と実践 大阪府
2020/3/6 Pythonを使った時系列データ分析 東京都
2020/3/6 スパースモデリングの基礎、導入のポイントと実践 東京都
2020/3/6 脈波、心拍の非侵襲計測技術とノイズ、振動対策 東京都
2020/3/6 エンジニアのための実験計画法 & Excel上で構築可能な人工知能を併用する非線形実験計画法入門 大阪府
2020/3/9 テキストマイニングの進め方と研究開発業務への活用 東京都
2020/3/10 ディジタル信号処理によるノイズ・雑音の低減 / 除去技術 東京都
2020/3/10 機械学習の基礎と応用が分かる一日速習セミナー 東京都
2020/3/11 人工知能を活用した研究開発業務の効率化と導入のポイント 東京都