技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

判断の根拠を"説明できるAI"の作り方と業務への導入、活用法

判断の根拠を"説明できるAI"の作り方と業務への導入、活用法

東京都 開催 会場 開催

概要

本セミナーでは、深層学習 (ディープラーニング) などのブラックボックス問題を解決する方法とAI導入の留意点について詳解いたします。

開催日

  • 2019年2月7日(木) 10時00分17時00分

プログラム

 昨今、深層学習 (ディープラーニング) が注目されており、企業の業務への導入が検討されていますが、深層学習の回路が容易に説明することができないブラックボックスになることが大きな問題になっています。このため、「説明できるAI」に対するニーズが急速に高まりつつあります。説明できるAI・機械学習を作るためには、深層学習などのブラックボックスの処理を明らかにする方法と、決定木などのホワイトボックスの処理の精度を向上させる方法があります。
 本セミナーでは、機械学習の産業応用の観点から、これらの技術の現状・課題・将来展望について、具体的な事例を交えながら機械学習に不慣れな方でも理解できるよう平易に解説します。

  1. 人工知能と機械学習
    1. 人工知能におけるパラダイムシフト
      • AI世代とそれぞれの考え方 など
    2. 機械学習の種類と特徴
      • 帰納学習
      • 演繹学習
      • 教師あり・なし学習
      • 強化学習 など
    3. 「説明できるAI」とは?
      • なぜ必要とされるのか?
      • 具体的に何ができれば良いのか? など
  2. 深層学習 (ディープラーニング) 入門
    1. 神経回路網について
      • 神経細胞
      • 相互結合型・階層型回路網
      • 確率的勾配降下法 など
    2. 深層学習の原理と手法
      • 深層化の手法
      • 深層学習のライブラリ
      • 最近の手法 など
    3. 深層学習の問題点と対応策
      • 深層学習の長所と短所
      • 対策 など
  3. ブラックボックス (深層学習など) の処理を明らかにする方法
    1. 回路を理解する/説明できるとは?
      • 何ができれば良いとするのか? など
    2. 学習済みの深層回路を説明する方法
      • 中間層での応答
      • ヒートマップの提示
      • Grad – CAM など
    3. 入出力の関係性を調べる方法
      • 入力から出力を予測する手法
      • Attention
      • LIME など
    4. 深層回路を小さな回路に圧縮・変換する方法
      • 回路規模を圧縮して実装し易くする各種の手法 など
    5. 原理が分かり易い深層回路を作る方法
      • GCM・EGCMや深層零平均正規化相互相関ネット など
    6. 他の知識を利用・転用する深層学習法
      • 転移学習
      • 蒸留
      • 浸透学習法 (PLM) など
  4. ホワイトボックス (決定木など) の精度を向上させる方法
    1. 人が理解し易い機械学習とは何か?
      • 処理フローの可視化
      • 直観的な知識表現
      • ルールベースの手法 など
    2. 単位処理のモジュール化による構造の最適化
      • 進化的画像処理
      • コネクショニズム型進化的画像認識 など
    3. 特徴量の最適化法
      • 特徴量の自動選択
      • 前処理の導入
      • ACSYS・SIFTER など
    4. 小規模な回路による高度な処理の実現方法
      • 進化的セル型回路網
      • 進化型ニューラルネットワーク など
    5. 処理プロセスが分かり易い認識器を作る方法
      • 進化的条件判断ネットワークEDEN など
    6. 処理プロセスを言葉で説明する方法
      • 決定木やEDENの処理を自然言語で表す手法 など
  5. 業務へのAI導入について
    1. AI導入に成功する企業の特徴
      • 何が成否を分けるのか? など
    2. AI導入の方法と留意点
      • AIベンダーへの丸投げの危険性 など
    3. 業務へのAI導入事例のご紹介
      • 具体的な相談内容から分かること など
    • 質疑応答

講師

  • 長尾 智晴
    横浜国立大学 大学院 環境情報学府・研究院 情報メディア環境学専攻
    教授

会場

株式会社 技術情報協会
東京都 品川区 西五反田2-29-5 日幸五反田ビル8F
株式会社 技術情報協会の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 54,000円 (税込)
複数名
: 45,000円 (税別) / 48,600円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、
    1名あたり 45,000円(税別) / 48,600円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 54,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,000円(税別) / 97,200円(税込)
    • 3名様でお申し込みの場合 : 3名で 135,000円(税別) / 145,800円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/12/19 粉体・流体シミュレーションと機械学習による濾過プロセスの最適化 オンライン
2025/12/19 未知の異常も検知する製造業向け人工知能技術MTシステムの基礎および適用事例 オンライン
2025/12/24 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2026/1/6 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2026/1/13 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/15 逆問題解析による材料の構造、プロセス条件設計 オンライン
2026/1/15 Pythonではじめる機械学習応用講座 オンライン
2026/1/15 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/16 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/19 マテリアルズ・インフォマティクスの実践と低誘電材料開発への応用 オンライン
2026/1/19 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/20 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/22 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/1/27 時系列データ分析 入門 : 基礎とExcelでの実行方法 オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/1/30 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/2 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/3 ROS/ROS2環境での三次元点群処理 オンライン

関連する出版物