技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

車載カメラによる周辺環境認識と画像処理技術

カメラ、レーダ、ディープラーニングによる自動運転のキーテクノロジーを解説する

車載カメラによる周辺環境認識と画像処理技術

~障害物・車両検出、歩行者認識、距離計測~
東京都 開催 会場 開催

開催日

  • 2017年4月21日(金) 10時00分 17時00分

プログラム

第1部 自動運転へ向けたセンサフュージョンと周辺認識技術

(2017年4月21日 10:00〜11:30)

 自動運転のための周辺認識技術について、車載カメラとレーザレーダによるセンサフュージョン手法を解説します。周辺認識としての車載カメラは、対象物体の反射特性に依存しないパッシブセンサとして、各種検出対象に適用可能です。
 これにパターン認識能力を加えると更に用途が広がり、走行環境で検出する必要のある、他車両、車線、信号、標識、そして歩行者用の検出センサとして用いることが可能です。しかし、カメラでの距離推定は課題が多いため、アクティブセンサとのフュージョンが必要になります。レーザレーダは、カメラとは違った特性のセンサとして、自動運転に欠かせないものになる可能性があります。
 本講では、車載カメラに必要とされる画像処理アルゴリズムの基本とレーザレーダによる物体認識手法を述べ、更に両者を融合するセンサフュージョンについて解説します。

  1. 自動運転に必要なセンシング技術
  2. 各センシング技術の特徴
    1. レーザレーダ
    2. 電波レーダ
    3. ステレオカメラ画像処理
    4. 単眼カメラ画像処理
  3. 各センシング技術の組み合わせ
    1. 電波レーダと単眼カメラ
    2. レーザレーダと単眼カメラ
    3. 電波レーダとステレオカメラ
    4. 電波レーダとレーザレーダ
  4. 各センサフュージョン技術
    1. 複合型センサフュージョン
    2. 統合型センサフュージョン
    3. 融合型センサフュージョン
    4. 連合型センサフュージョン
    • 質疑応答

第2部 全周囲監視カメラを用いた周辺環境認識システムの開発と精度向上技術

(2017年4月21日 12:10〜13:40)

 この講座を通して、普及が進んでいる周辺監視カメラの製品化の歴史から将来動向までを把握することが出来ます。また、周辺監視カメラを用いた画像認識技術により、どの様な機能が実現出来るかを俯瞰し、それらに必要な技術が理解出来ます。
 前方カメラによる一般的な画像認識技術に対する、特有の課題や技術を、実環境での映像を交えながら紹介します。

  1. 周辺監視カメラの動向
    1. 製品化の歴史
    2. 将来動向
  2. 周辺監視カメラで実現可能な認識機能
    1. レーン認識機能
      1. 線分認識技術
        • 道路境界認識
        • フロントカメラによる認識との得失比較
    2. 移動体認識機能
      1. オプティカルフロー検知技術
        • 接近車両,自転車,歩行者認識
    3. 静止物認識機能
      1. パターン認識技術
        • 人検知,車両検知
      2. ステレオカメラ技術
        • 後退時人検知,障害物検知
      3. 移動ステレオ技術
        • 駐車空間認識
      4. 全周囲監視カメラステレオ化技術
        • 交差点での横断歩行者認識
    • 質疑応答

第3部 ステレオカメラ、単眼カメラを用いた3次元計測と車載外界センシング技術

(2017年4月21日 13:50〜15:20)

 自動車の予防安全技術の普及、さらに自動運転技術の実用化へ向けて、カメラを用いた画像センシング技術の高度化が進んでいる。
 本講演では、単眼カメラ、ステレオカメラを用いて3次元計測や物体の検知・識別を行う技術について述べ、さらに車載環境における外界センシングへの応用事例について紹介する。

  1. 自動車におけるカメラセンシング
    1. 予防安全システムにおける外界センシング
    2. カメラとレーダの比較
  2. 車載カメラで使われている画像処理技術
    1. ステレオカメラによる3次元計測
    2. 単眼カメラによる距離計測
    3. 物体検出、識別処理
  3. 適用事例
    1. ステレオカメラ
    2. 全周囲カメラ・リアカメラ
  4. 自動運転に向けた取り組み
  5. まとめ
    • 質疑応答

第4部 ディープラーニングを用いた歩行者認識と精度向上

(2017年4月21日 15:30〜17:00)

 ディープラーニング、特に畳み込みニューラルネットワーク (CNN) は、一般物体認識で人の認識精度に迫っている。CNNにより、従来の画像認識のフレームワークが大きく変化し、さらに画像認識以外への応用も進んでいる。
 本講演では、CNNの仕組みと画像認識の応用事例、我々の研究グループでの取り組みについて紹介する。

  1. ディープラーニングの現状
  2. 畳み込みニューラルネットワーク
  3. 物体認識への応用
    1. AlexNet
    2. VGG
    3. GoogleNet
    4. Residual Network
  4. 物体検出への応用
    1. R-CNN
    2. Fast R-CNN
    3. Faster R-CNN
    4. YOLO
    5. SSD
    6. 歩行者検出の現状
  5. セマンティックセグメンテーションへの応用
    1. Fully Convolutional Network
    2. SegNet
    3. PSPNet
    4. セグメンテーションのデータベース
  6. まとめ
    • 質疑応答

講師

  • 伊東 敏夫
    芝浦工業大学 システム理工学部 機械制御システム学科 運転支援システム研究室
    教授
  • 秋田 時彦
    豊田工業大学 スマートビークル研究センター
    特任上級研究員
  • 志磨 健
    株式会社 日立製作所 研究開発グループ 制御イノベーションセンタ スマートシステム研究部
    主任研究員
  • 山下 隆義
    中部大学 工学部 情報工学科
    教授

会場

株式会社 技術情報協会
東京都 品川区 西五反田2-29-5 日幸五反田ビル8F
株式会社 技術情報協会の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 60,000円 (税別) / 64,800円 (税込)
複数名
: 55,000円 (税別) / 59,400円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、
    1名あたり 55,000円(税別) / 59,400円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 60,000円(税別) / 64,800円(税込)
    • 2名様でお申し込みの場合 : 2名で 110,000円(税別) / 118,800円(税込)
    • 3名様でお申し込みの場合 : 3名で 165,000円(税別) / 178,200円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

関連する出版物

発行年月
2021/10/25 AIプロセッサー
2021/9/30 自動車室内の静粛性向上と、防音・防振技術、材料の開発
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2021/4/13 GAFA+Mの自動運転車開発最前線
2021/1/31 次世代EV/HEV用モータの高出力化と関連材料の開発
2020/12/25 次世代自動車の熱マネジメント
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/12/13 2020年版 次世代自動車市場・技術の実態と将来展望
2019/1/31 センサフュージョン技術の開発と応用事例
2019/1/29 高周波対応部材の開発動向と5G、ミリ波レーダーへの応用
2018/12/14 2019年版 次世代自動車市場・技術の実態と将来展望
2018/11/30 EV・HEV向け電子部品、電装品開発とその最新事例
2018/6/30 ADAS・自動運転を支えるセンサーの市場動向