技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

人工知能技術:MTシステム 超入門

Excel上で簡単に構築できる

人工知能技術:MTシステム 超入門

~未学習の未知の異常検知、異常モニタリング・予防保全技術への活用事例~
オンライン 開催

概要

本セミナーでは、未知の異常検知、異常モニタリングの一手法として、その実用的な性質から多くの分野で活用されている「MTシステム」について取り上げ、MTシステムの基礎から解説し、既存のデータを活用し、判別・識別、診断、予測に活用する方法について詳解いたいます。

開催日

  • 2025年2月20日(木) 13時00分 15時30分

受講対象者

  • 要素技術、加工技術、測定評価技術などの分野で人工知能を活用したい開発者の方
  • 最先端で未成熟な技術ではなく、製造業で実績があり、簡便に使える人工知能技術を求めている方
  • エクセルのように簡単に使える人工知能技術を求めている方
  • 破壊検査などの抜取り検査を全数検査に変え、量産品質トレンドや設備モニタリングを行い、不良を未然に防ぎたい方
  • 検査工程を作らず、加工工程自体が検査工程になる仮想検査技術を求めている方
  • 直接計測不可能な特性を代替え特性から推定するセンサレスセンシング技術を求めている方
  • 特定の不良状態を自動的に見つけるだけなく、未知の不良状態 (未定義の不良品) を見つける技術が必要な方

修得知識

  • 要素技術、生産システム、加工技術の開発者に適した人工知能技術の基礎知識と応用ノウハウ
  • 最先端で未成熟な技術ではなく、製造業で実績があり、簡便に使える人工知能の知識
  • エクセルのように簡単に使える人工知能構築ツールやアルゴリズム
  • 抜き取り検査しかできなかった工程を人工知能による推定全数検査化する方法
  • 検査工程を作らず、加工工程自体が検査工程になる仮想検査の構築方法
  • 直接計測不可能な特性を代替え特性から推定するセンサレスセンシングを構築する方法
  • 学習していない未知の異常も検出する技術を活用した検査システム、設備の予防保全システムを構築する方法
  • 人的な官能 (感性) 検査を機械化 (自動化) する方法
  • 製造業における人工知能の使いこなしノウハウ
  • 第四次産業型の補助金申請に必要なIoT&AIシステム構成と処理フローの事例

プログラム

 最先端技術であるディープラーニングが話題になり、人工知能ブームが再来していると言われています。最先端の技術は重要ではありますが、製造業の技術者が開発実務に活用するには敷居が高いことが課題ではないでしょうか? このように人工知能には、活用が難しいイメージがありますが、ものづくり分野に絞れば、適切な手法の使い分けとノウハウで意外と簡単に活用可能です。
 ディープラーニングを含む人工知能にも、アカデミックな最先端技術に対して成熟した「エンジニアリングに適した技術」があり、その技術はものづくりの開発現場で安心して使うことが可能です。また、ビッグデータにも誤解が多く、本来の意味とは異なる内容が一人歩きしている状況です。本来のビッグデータの意味を理解し、適切な手法の応用や、要素技術者の皆さん自身の知見を活かすと、高性能な人工知能の開発に必要なデータの最小化も可能です。また、適切な手法を使用すれば、学習していない未知の不良や異常を見つける人工知能を用いた検査技術やセンシング技術も、要素技術者自身で開発可能です。
 本講座では、エンジニアリングに適した人工知能技術であるMTシステムに関して、基礎的な解説を行った上で、製造業における具体的な事例を用いて応用ノウハウを解説します。ものづくり技術者にとって、人工知能は目的ではなく、技術課題を解決する手段として使えることが理想的です。本講座で解説するエンジニアリングに適した人工知能技術を使うことで、技術者は、解決すべき技術課題に集中することが可能になります。なお、MTシステムをExcel上で簡単に構築する方法も、計算過程も含めて紹介いたします。

  1. 人工知能技術の概要
    1. 要素技術者から見た開発ツールとしての人工知能技術
    2. 参考:データ採取のポイント (ビッグデータの誤解)
    3. 要素技術者に適した人工知能構築ツール
  2. 事例 MTシステム活用: 未学習の未知異常検知技術 (異常モニタリング、予防保全技術)
    • 事前に学習できない未知の異常・不良を検出したい場合の対処方法を、エンジンの異常音など、聴感による官能検査工程を自動化した事例を元に解説
      1. 背景:異常音で判断する官能検査工程の紹介
      2. 定義できる不良音と定義できない不良音。未知の不良を見つける必要性
      3. MTシステム (MT法) とは
      4. 人工知能活用の実施手順
      5. データ収集、及び人工知能による異常音推定システム構築例
      6. システムの動作フローチャート
      7. 本事例を応用可能な別事例の紹介
  3. 全体質疑応答

参考資料: MTシステムと対比で理解促進のための事例掲載 (解説なし)

  1. 事例 ニューラルネットワークモデル活用
    • 加工状況データから加工品質を推定する検査機レス検査技術 (仮想検査技術、センサレスセンシング技術)
  2. 溶接の抜取り破壊検査工程を、溶接と同時に溶接強度を推定し、全数検査と量産品質トレンドや設備状態のモニタリングを可能にした事例
    1. 背景:溶接と抜取り破壊検査の紹介
    2. 全数検査化に先立つ要素技術
    3. 人工知能活用の実施手順
    4. データ収集、及び人工知能による強度推定のシステム構築例
    5. システムの動作フローチャート
    6. 本事例を応用可能な別事例の紹介

講師

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 23,700円 (税別) / 26,070円 (税込)
複数名
: 12,500円 (税別) / 13,750円 (税込)

複数名受講割引

  • 2名様以上でお申込みの場合、1名あたり 12,500円(税別) / 13,750円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 23,700円(税別) / 26,070円(税込)
    • 2名様でお申し込みの場合 : 2名で 25,000円(税別) / 27,500円(税込)
    • 3名様でお申し込みの場合 : 3名で 37,500円(税別) / 41,250円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」とご記入ください。
  • 他の割引は併用できません。
  • サイエンス&テクノロジー社の「2名同時申込みで1名分無料」価格を適用しています。

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

  • 1名様あたり 10,000円(税別) / 11,000円(税込)
  • 企業に属している方(出向または派遣の方も含む)は、対象外です。
  • お申込み者が大学所属名でも企業名義でお支払いの場合、対象外です。

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は郵送にて前日までにお送りいたします。
  • 開催まで4営業日を過ぎたお申込みの場合、セミナー資料の到着が、開講日に間に合わない可能性がありますこと、ご了承下さい。
    ライブ配信の画面上でスライド資料は表示されますので、セミナー視聴には差し支えございません。
    印刷物は後日お手元に届くことになります。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/11/15 Pythonによる機械学習の基礎と異常検知への適用、実装ポイント オンライン
2024/11/15 マテリアルズ・インフォマティクス入門 オンライン
2024/11/18 品質管理の基礎 (4日間) オンライン
2024/11/18 品質管理の基礎 (4) オンライン
2024/11/19 分離工学の基礎、各種技術 (蒸留・抽出・吸着・膜分離) とシミュレーションによる簡単解析 オンライン
2024/11/19 機械設計の基礎知識と応用技術 オンライン
2024/11/20 Excelを使用した統計学の初級・中級コース 2日間講座 オンライン
2024/11/20 深層学習と適応フィルタ オンライン
2024/11/20 機械の基礎 オンライン
2024/11/20 ビジネスパーソンに必要な統計学入門講座 オンライン
2024/11/21 ディープニューラルネットワークモデルとMTシステムの基礎・学習データ最小化・ エンジニアリング応用入門 オンライン
2024/11/21 画像認識技術入門 オンライン
2024/11/22 はじめて学ぶ機械製図 オンライン
2024/11/22 スモールデータ解析の方法と実問題解決への応用 オンライン
2024/11/22 情報不足な開発初期段階において医薬品の事業性評価を適切に進める為のデータ活用と売上予測の方法 オンライン
2024/11/22 実践ねじ締結設計 オンライン
2024/11/25 Pythonによる機械学習の基礎と異常検知への適用、実装ポイント オンライン
2024/11/25 医療機器開発の全体像とF/Sフェーズ・設計開発フェーズにおける実務ノウハウ オンライン
2024/11/25 統計手法の基礎 オンライン
2024/11/27 ディープニューラルネットワークモデルとMTシステムの基礎・学習データ最小化・ エンジニアリング応用入門 オンライン

関連する出版物

発行年月
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/2/28 撹拌装置の設計とスケールアップ
2021/10/25 AIプロセッサー
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/18 医療機器の設計・開発時のサンプルサイズ設定と設定根拠
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/9/25 マシニングセンタ 技術開発実態分析調査報告書 (CD-ROM版)
2013/9/25 マシニングセンタ 技術開発実態分析調査報告書
2013/6/21 機械学習によるパターン識別と画像認識への応用