技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

ディープラーニングと機械学習プロジェクトの進め方

AI活用人材育成講座 (第2回 / 全3回)

ディープラーニングと機械学習プロジェクトの進め方

オンライン 開催 PC実習付き デモ付き

概要

本セミナーでは、機械学習について基礎から解説し、ディープラーニングの具体的な実践方法をわかりやすく解説いたします。

開催日

  • 2024年7月8日(月) 10時00分 17時00分

修得知識

  • プログラム:Pythonの基本の習得
  • 機械学習:基本の習得と実践できる環境の構築
  • 深層学習 (画像分類、物体検出、自然言語処理) が一通り自分で試せるようになる

プログラム

 AIの基礎となるディープラーニングの基本を学習します。ディープラーニングの中の様々の手法を確認することで、データからの特徴抽出のための考え方が身に付きます。また、後半は機械学習プロジェクトの進め方を学習します。
 実際のプロジェクトを進める上での課題 (特徴量エンジニアリングはどうする、データ量が少ない、ハイパーパラメータの決定) などへの対処方法を学習します。
 なお、無償のGoogle Colaboratoryを使用することで、実際に動きを確かめながら、学習することが可能です。

  1. ディープラーニングの基礎
    1. 機械学習とディープラーニングの違いは?
      1. ディープニューラルネットワークとは
      2. 把握すべきディープニューラルネットワークの特性
    2. ディープラーニングを分類し、その特徴を把握する
      1. 畳み込みニューラルネットワーク CNN (Convolutional Neural Network)
      2. 再帰型ニューラルネットワーク RNN (Recurrent Neural Network)
      3. 強化学習 (Deep Q – learning)
      4. その他の手法
  2. 機械学習プロジェクト進め方
    1. データ準備
    2. 一般的なデータ前処理
    3. 特徴量エンジニアリング
    4. 手法の定義
    5. パラメータ調整
      1. ハイパーパラメータとは
      2. ハイパーパラメータの自動調整 (optunaの活用)
    6. データ量に関する考察
    7. 基盤モデルと転移学習
    • 質疑応答

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 25,000円 (税別) / 27,500円 (税込) (案内をご希望の場合に限ります)

案内割引・複数名同時申込割引について

R&D支援センターからの案内登録をご希望の方は、割引特典を受けられます。
案内および割引をご希望される方は、お申込みの際、「案内の希望 (割引適用)」の欄から案内方法をご選択ください。

「案内の希望」をご選択いただいた場合、1名様 45,000円(税別) / 49,500円(税込) で受講いただけます。
複数名で同時に申込いただいた場合、1名様につき 25,000円(税別) / 27,500円(税込) で受講いただけます。

  • R&D支援センターからの案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 45,000円(税別) / 49,500円(税込)
    • 2名様でお申し込みの場合 : 2名で 50,000円(税別) / 55,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 75,000円(税別) / 82,500円(税込)
  • R&D支援センターからの案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 55,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 100,000円(税別) / 110,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 150,000円(税別) / 165,000円(税込)

3日間コースのお申込み

セット対象セミナー

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/11/22 スモールデータ解析の方法と実問題解決への応用 オンライン
2024/11/25 Pythonによる機械学習の基礎と異常検知への適用、実装ポイント オンライン
2024/11/26 Pythonによるデータ解析の基礎と実務への応用 オンライン
2024/11/27 ディープニューラルネットワークモデルとMTシステムの基礎・学習データ最小化・ エンジニアリング応用入門 オンライン
2024/11/27 医薬品開発に使えるタンパク質の理論的デザイン法とタンパク質のフォールディング予測法 オンライン
2024/11/28 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/11/28 “データサイエンス入門”の入門 オンライン
2024/11/28 音・画像情報処理技術の基礎と認識・検査システムへの応用 オンライン
2024/11/29 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/2 カルマンフィルタの実践 オンライン
2024/12/3 ルールベースと機械学習ベースの画像認識技術 オンライン
2024/12/4 機械学習に基づいた不確実環境下における適応的実験計画 オンライン
2024/12/9 Pythonによるデータ解析の基礎と実務への応用 オンライン
2024/12/9 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/11 AIニューラルネットワークが切り拓く次世代センシング技術 オンライン
2024/12/11 機械学習のためのデータ前処理技術とノウハウ オンライン
2024/12/11 音・画像情報処理技術の基礎と認識・検査システムへの応用 オンライン
2024/12/12 ライトフィールド技術の原理と応用および最新技術動向 オンライン
2024/12/13 AI/生成AIを活用した研究開発の意思決定と評価軸の考え方 オンライン
2024/12/13 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン

関連する出版物

発行年月
2024/4/15 無人配送車・システム 技術開発実態分析調査報告書
2024/4/15 無人配送車・システム 技術開発実態分析調査報告書 (CD-ROM版)
2024/4/8 画像認識技術・システム 技術開発実態分析調査報告書 (CD-ROM版)
2024/4/8 画像認識技術・システム 技術開発実態分析調査報告書
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/6/30 自動運転車に向けた電子機器・部品の開発と制御技術
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用