技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

人工知能を活用した実験計画法と最適条件の見つけ方

人工知能を活用した実験計画法と最適条件の見つけ方

東京都 開催 会場 開催

概要

本セミナーでは、実験計画法の問題点とその解決策について解説いたします。
ニューラルネットワークモデルを併用した実験計画法の進め方について解説いたします。

開催日

  • 2018年10月25日(木) 10時00分 17時00分

受講対象者

  • 機械、電子電気部品、材料、家電、加工/生産装置、計測評価機器、医工分野等の製品や技術開発に携わり、開発効率を高めたい方
  • 人工知能を実験/評価に活用し、開発効率を高めたい方
  • 問題に関係する要素が多く、体系的な実験解析手法を必要とする方
  • 開発難易度が上がった、未経験分野への進出等、従来のやり方では成果が出ない方
  • 安価な部品や装置で高い性能目標を達成する開発方法を求める方
  • 実験計画法の基礎と、実務適応に関心を持つ方
  • 実験計画法や品質工学 (タグチメソッド) を使ってみたが、上手く行かなかった方

修得知識

  • 従来の開発方法の問題点と解決策
  • 数多くの要因の組合せを効率的に実験し、最適条件を導き出す方法
  • 製造業における実験計画法の基本的な考え方から実践手順
  • 製造業における実験計画法の原理的な問題点と解決方法
  • 非線形性が強い現象の場合に有効なニューラルネットワークモデル (超回帰モデル) を併用する解析手順
  • 複雑な関係を持つ構成要素間の最適な組合せ条件を見つける手法 (直行表と乱数の応用、遺伝的アルゴリズム)
  • 実験計画法や品質工学 (タグチメソッド) を開発で使ったが、上手く行かなかった方々への解決策

プログラム

 実験計画法は、少ない実験回数で多くの構成要素が関係する現象の解析が可能です。その解析方法を使うと、本来、数千通りの実験が必要な場合でも、数十通りの実験回数で、構成要素間の最適な組合せ (因子ごとの最適条件) を見つけることが可能です。 しかしながら、解析の前提として構成要素の組合せ効果が線形モデル (構成要素の影響が足し算で構成された単純なモデル) にもとづくことを前提にしており、構成要素が複雑に絡みあう製造業の開発では、最適条件の推定が外れることが多々ありました。
 本セミナーでは、まず、実験計画法の原理と問題点の解説を行い、その上で、実験計画法の問題点を補うために人工知能の一種であるニューラルネットワークモデル (超回帰モデル) を併用した、製造業の開発により適した非線形実験計画法を解説いたします。 実験計画法の導入を考えている初学者の方、これまで実験計画法や品質工学 (タグチメソッド) を使ったが上手く行かなかったという方々に、具体的な解決策を詳細に説明します。

  1. 典型的な既存の開発方法の問題点
    1. 解説用事例 洗濯機 振動課題の説明
    2. 既存の開発方法とその問題点
  2. 実験計画法とは
    1. 実験計画法の概要
      1. 本来必要な実験回数よりも少ない実験回数で結果を出す方法の概念
      2. 分散分析とF検定の原理
      3. 実際の解析方法
      4. 実験計画法の原理的な問題点
    2. 検討要素が多い場合の実験計画
      1. 実験計画法の実施手順
      2. ステップ1 『技術的な課題を整理』
      3. ステップ2 『実験条件の検討』
        • 直交表の解説
      4. ステップ3 『実験実施』
      5. ステップ4 『実験結果を分析』
        • 分散分析表 その見方と使い方
        • 工程平均、要因効果図 その見方と使い方
        • 構成要素の一番良い条件組合せの推定と確認実験
      6. 解析ソフトウェアの紹介
      7. 実験計画法の解析実演
  3. 実験計画法の問題点
    1. 推定した最適条件が外れる事例の検証
    2. 線形モデルと非線形モデル
    3. 非線形モデル (非線形性現象) に対する2つのアプローチ
  4. 実験計画法の問題点解消方法
    ~ニューラルネットワークモデル (超回帰モデル) の活用~
    1. 複雑な因果関係を数式化するニューラルネットワークモデルとは
      • 超回帰モデル
      • 非線形性多重多層回帰式
    2. ニューラルネットワークモデル (超回帰モデル) を使った実験結果のモデル化
    3. 非線形性が強い場合の実験データの追加方法
      • 超回帰モデル構築ツールの紹介
  5. ニューラルネットワークモデル (超回帰モデル) を使った最適条件の見つけ方
    1. 直交表の水準替え探索方法
    2. 直交表 + 乱数による探索方法
    3. 確認実験と最適条件が外れた場合の対処法
    4. ニューラルネットワークモデル (超回帰モデル) の実演
  6. その他、製造業特有の実験計画法の問題点と開発手法
    1. 開発対象 (実験対象) の性能を乱す客先使用環境を考慮した開発
    2. 客先使用条件による動的な変化を矛盾なく解析する方法
    3. 客先使用環境を考慮した開発実験方法 品質工学概要
  7. 学習用 参考文献 紹介
    • 質疑応答

講師

会場

株式会社 技術情報協会

8F セミナールーム

東京都 品川区 西五反田2-29-5 日幸五反田ビル8F
株式会社 技術情報協会の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 54,000円 (税込)
複数名
: 45,000円 (税別) / 48,600円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、
    1名あたり 45,000円(税別) / 48,600円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 54,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,000円(税別) / 97,200円(税込)
    • 3名様でお申し込みの場合 : 3名で 135,000円(税別) / 145,800円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

関連する出版物

発行年月
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用
2003/6/27 ニューアルゴリズムによる画像処理システム事例解説
2001/9/28 MATLABプログラム事例解説Ⅱ アドバンスド通信路等化
1993/3/1 新しいサーボ制御の基礎と実用化技術