技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

深層学習 (ディープラーニング) の基礎的・根本的な原理を徹底的に理解しよう

深層学習 (ディープラーニング) の基礎的・根本的な原理を徹底的に理解しよう

~誤差逆伝播法、確率的勾配降下法などの深層学習の原理をわかりやすく~
東京都 開催 会場 開催

開催日

  • 2017年11月29日(水) 10時30分 16時30分

修得知識

  • 現在の深層学習の全体像
  • 次々に発表される先端研究のおおまかな把握が可能となる
  • 効果的でユニークなアプリケーション開発が可能となる

プログラム

 深層学習のソフトウェアの使い方を解説する本が多く出版されています。これらを実際に使ったご経験のある方は増えていると思います。プログラムは指示通りに動いてくれますが、一方で何かが不足していると感じませんか?それは、根本的な原理の理解です。深層学習の基本原理が理解できると、以下のように一段高い場所から深層学習が見えてくるようになります。

  • 現在の深層学習の全体像を把握できる。
  • 次々に発表される先端研究のおおまかな把握が楽になる。
  • 効果的でユニークなアプリケーション開発が可能となる。

 本講座では、深層学習で広く用いられている代表的な学習アルゴリズムについてわかりやすく解説します。

  1. 深層学習のいろいろ
    1. 深層学習の3つの流れ
    2. 代表的な深層学習
      1. 階層型ニューラルネットワーク
      2. リカレントニューラルネットワーク
      3. 畳み込みニューラルネットワーク
      4. 深層ボルツマンマシン
  2. 最急降下法
    ~ニューラルネットワークの基本原理~ を理解しよう
    1. ニューラルネットワークを最も単純化しよう
      ~簡単なディジタルフィルタとして~
    2. 誤差を小さくするためには
    3. 微分の復習
    4. 学習アルゴリズムの導出
      ~何とこんなにシンプルなアルゴリズムになる~
  3. ニューラルネットワークに適用しよう
    ~誤差逆伝播法 (バックプロパゲーション) ~
    1. 出力層に近い層は簡単
    2. 1層奥に入るにはアイデアが必要だった ~誤差を逆方向に伝搬させる~
    3. 非線形性が効果的である理由を理解しよう
    4. 実際の応用例
  4. 畳み込みニューラルネットワーク
    1. 単純型細胞と複雑型細胞
    2. 畳み込み
    3. プーリング
    4. 学習の概要
      ~ここでも誤差を逆方向に~
    5. 実際の応用例
  5. 深層学習の課題と今後の発展
    1. 現在の深層学習の課題
    2. 今後の発展の方向性
  6. まとめ
    • 質疑応答

講師

  • 萩原 将文
    慶應義塾大学 理工学部 情報工学科
    教授

会場

品川区立総合区民会館 きゅりあん

5F 第2講習室

東京都 品川区 東大井5丁目18-1
品川区立総合区民会館 きゅりあんの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 42,750円 (税別) / 46,170円 (税込)
複数名
: 22,500円 (税別) / 24,300円 (税込)

複数名同時受講の割引特典について

  • 2名様以上でお申込みの場合、
    1名あたり 22,500円(税別) / 24,300円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 42,750円(税別) / 46,170円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 48,600円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 72,900円(税込)
  • 受講者全員が会員登録をしていただいた場合に限ります。
  • 同一法人内(グループ会社でも可)による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」と記入ください。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/4/22 マテリアルズインフォマティクスの高分子材料開発への応用 オンライン
2025/4/22 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/4/23 小規模データに対する機械学習の効果的適用法 オンライン
2025/4/25 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/4/25 マテリアルズインフォマティクスの基礎と高分子材料設計における応用事例 オンライン
2025/4/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/4/30 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/5/7 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/5/7 生成AIを活用したデータ分析の基礎とポイント オンライン
2025/5/13 異常検知への生成AI活用と判断の標準化、高精度化 オンライン
2025/5/15 化学工学におけるビッグデータ非依存のニューラルネットワーク活用手法 オンライン
2025/5/16 画像認識技術入門 オンライン
2025/5/19 AI分野における特許戦略 オンライン
2025/5/20 マテリアルズインフォマティクス・第一原理計算の基礎と材料研究への応用 オンライン
2025/5/22 実績ありの製造業AI活用ノウハウ オンライン
2025/5/23 AI分野における特許戦略 オンライン
2025/5/28 化学工学におけるビッグデータ非依存のニューラルネットワーク活用手法 オンライン
2025/6/4 マテリアルズインフォマティクスのためのデータ解析 オンライン
2025/6/5 汎用的インフォマティクス&統計的最適化 実践入門 オンライン
2025/6/6 時系列データ分析の基礎と実務への応用 オンライン

関連する出版物

発行年月
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用
2003/6/27 ニューアルゴリズムによる画像処理システム事例解説
2001/9/28 MATLABプログラム事例解説Ⅱ アドバンスド通信路等化
1993/3/1 新しいサーボ制御の基礎と実用化技術