技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

数学嫌いでもわかる「機械学習」超入門

数学嫌いでもわかる「機械学習」超入門

~基礎知識、手法の原理の理解、マーケティング分野への活用~
東京都 開催 会場 開催

概要

本セミナーでは、機械学習の理論をできるだけわかりやすく説明いたします。
適宜Pythonによるサンプルコードや実際の機械学習を利用したアプリやシステム、サービスなどの事例を示しながら解説いたします。

開催日

  • 2017年1月23日(月) 10時30分16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者
  • 機械学習で課題を抱えている方

プログラム

 機械学習の教科書を見ると、理論やアルゴリズムが数式によって説明されています。これが理由で機械学習の勉強を挫折される方がたくさんいます。しかし、機械学習の真髄は数学を使わなくても説明可能です。
 本セミナーでは、機械学習の理論をできるだけわかり易く説明するため、数式の意味を解説しながら、グラフ等により視覚的な説明を心掛けます。また、適宜Pythonによるサンプルコードや実際の機械学習を利用したアプリやシステム、サービスなどの事例を示しながら進めていきます。

  1. 人工知能 (機械学習) とは
    1. 人工知能と機械学習
    2. なぜ人工知能が注目されるのか?
    3. 機械学習に必要なもの
    4. ビッグデータ
  2. 機械学習の基礎
    1. 機械学習とデータマイニングの違い
    2. 機械学習の種類
    3. 教師あり学習
    4. 教師なし学習
    5. 中間的手法
    6. 機械学習に何ができるのか?
    7. 回帰 : 重回帰分析
    8. 分類 : パーセプトロン、ニューラルネットワーク
    9. クラスタリング : k-means
    10. 次元削減 : 主成分分析
    11. ルールマイニング : Apriori
    12. 機械学習手法の性能を評価する
  3. 機械学習の応用
    1. 機械学習のワークフロー
    2. ディープラーニングとは
    3. 特徴量とは
    4. 特徴量抽出の意味する事
    5. 機械学習システムを作るには
    6. Pythonと機械学習ライブラリ
    7. 機械学習を活用する際の注意点
  4. 機械学習のマーケティング分野への活用
    1. マーケティング分析に使われる手法
    2. レコメンダーシステム (推薦システム)
    3. 顧客の嗜好を分析する
    4. テキストマイニング
    5. 自然言語処理
    6. 言葉のデータ化
    • 質疑応答

講師

  • 櫻井 義尚
    明治大学 総合数理学部 ネットワークデザイン学科
    准教授

会場

品川区立総合区民会館 きゅりあん

5F 第1講習室

東京都 品川区 東大井5丁目18-1
品川区立総合区民会館 きゅりあんの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 42,750円 (税別) / 46,170円 (税込)
複数名
: 22,500円 (税別) / 24,300円 (税込)

複数名同時受講の割引特典について

  • 2名様以上でお申込みの場合、
    1名あたり 22,500円(税別) / 24,300円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 42,750円(税別) / 46,170円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 48,600円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 72,900円(税込)
  • 受講者全員が会員登録をしていただいた場合に限ります。
  • 同一法人内(グループ会社でも可)による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」と記入ください。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/3/6 Google Gemini3 plus×Workspaceで実現する生成AIによる統計解析・データ分析 オンライン
2026/3/6 技術マーケティングを活用した商品コンセプトの創出と新規R&Dテーマ発掘 オンライン
2026/3/9 生成AIによる特許調査・分析の現状と実務への適用 オンライン
2026/3/10 医薬品マーケティング戦略立案と市場・売上予測 オンライン
2026/3/12 研究開発部門が行う高収益ビジネスモデルの構築と実現 オンライン
2026/3/12 Excelで始める実践データ分析 オンライン
2026/3/12 新規モダリティ (核酸医薬、遺伝子治療、細胞治療など) における事業性評価手法と注意すべき点 オンライン
2026/3/12 ICH新ガイドラインに対応する分析法開発と分析法バリデーションの基礎と実践 オンライン
2026/3/13 開発・生産現場で諸課題を解決に導くデータ駆動型手法 / ディープニューラルネットワークモデル / MTシステムの基礎と応用 オンライン
2026/3/16 小規模実験の自動化による研究開発の効率化と再現性向上 オンライン
2026/3/16 技術者・研究者に必要なマーケティングの基礎、知識と実践 オンライン
2026/3/17 Google Gemini3 plus×Workspaceで実現する生成AIによる統計解析・データ分析 オンライン
2026/3/19 医薬品マーケティング戦略立案と市場・売上予測 オンライン
2026/3/19 ISO 13485:2016が要求する医療機器サンプルサイズの根拠を伴う統計学的手法 (全2コース) オンライン
2026/3/19 ISO 13485:2016の要求事項に有効な統計的手法 オンライン
2026/3/25 研究開発を動かす「ボトムアップ・リーダーシップ」とテーマ創出 東京都 会場・オンライン
2026/3/26 ISO 13485:2016の要求事項に有効な統計的手法とそのサンプルサイズの計算法 オンライン
2026/3/31 Pythonで学ぶデータ解析・機械学習を理解するための線形代数入門 オンライン
2026/4/3 ISO 13485:2016が要求する医療機器サンプルサイズの根拠を伴う統計学的手法 (全2コース) オンライン
2026/4/3 ISO 13485:2016の要求事項に有効な統計的手法 オンライン

関連する出版物

発行年月
2024/11/30 技術マーケティングによる新規事業・R&Dテーマの発掘
2024/10/31 少ないデータによるAI・機械学習の進め方と精度向上、説明可能なAIの開発
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書 (CD-ROM版)
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/8/31 医療機器の設計開発における統計的手法とそのサンプルサイズ設定
2022/2/28 With・Afterコロナで生まれた新しい潜在・将来ニーズの発掘と新製品開発への応用
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/10/18 医療機器の設計・開発時のサンプルサイズ設定と設定根拠
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2018/4/25 統計学的アプローチを活用した分析法バリデーションの評価及び妥当性