技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
本セミナーでは、カルマンフィルタについて基礎から解説いたします。
また、実際に使うためのポイント、応用事例まで平易に解説いたします。
本セミナーでは、小型、高精度で低コストなLiDARの実現へ向けた新技術とその可能性について解説いたします。
本セミナーでは、GNSSデータとIMUセンサやSPEEDセンサとのの統合手法についてできるだけ平易に紹介いたします。
GNSSはトンネル内や高層ビルが密集した場所や、高架下では残念ながら機能しません。その意味でIMUやSPEEDセンサとのカップリングは非常に相性がよいと考えられます。
本セミナーでは、まず、線形カルマンフィルタのアルゴリズムを紹介し、数値例を通してカルマンフィルタの仕組みについて学習します。続いて、代表的な非線形カルマンフィルタである拡張カルマンフィルタ (EKF) と無香料カルマンフィルタ (UKF) のアルゴリズムを説明し、非線形カルマンフィルタを用いた状態とパラメータの同時推定を導入します。また、カルマンフィルタの数値的不安定性について述べ、その問題点に対処するUD分解フィルタを導入します。さらに、カルマンフィルタの2つの応用例を紹介いたします。
本セミナーでは、カルマンフィルタの基礎理論について詳細に解説します。センシング、制御、あるいは機械学習などのAI の分野とカルマンフィルタの関係についても述べます。
本セミナーでは、カルマンフィルタについて基礎から、できるだけわかりやすく解説いたします。
また、応用例としてリチウムイオン二次電池の充電率推定への応用について解説いたします。
本セミナーでは、GNSSデータとIMUセンサやSPEEDセンサとのの統合手法についてできるだけ平易に紹介いたします。
GNSSはトンネル内や高層ビルが密集した場所や、高架下では残念ながら機能しません。その意味でIMUやSPEEDセンサとのカップリングは非常に相性がよいと考えられます。
本セミナーでは、まず、線形カルマンフィルタのアルゴリズムを紹介し、数値例を通してカルマンフィルタの仕組みについて学習します。続いて、代表的な非線形カルマンフィルタである拡張カルマンフィルタ (EKF) と無香料カルマンフィルタ (UKF) のアルゴリズムを説明し、非線形カルマンフィルタを用いた状態とパラメータの同時推定を導入します。また、カルマンフィルタの数値的不安定性について述べ、その問題点に対処するUD分解フィルタを導入します。さらに、カルマンフィルタの2つの応用例を紹介いたします。
本セミナーでは、カルマンフィルタの基礎理論について詳細に解説します。センシング、制御、あるいは機械学習などのAI の分野とカルマンフィルタの関係についても述べます。できれば、古典制御や現代制御、確率過程などの知識をお持ちの方が望ましいですが、高等学校の数学の知識があれば、本セミナーを理解できるようにお話ししたいと考えています。
本セミナーでは、まず、線形カルマンフィルタのアルゴリズムを紹介し、数値例を通してカルマンフィルタの仕組みについて学習します。
つづいて、非線形カルマンフィルタの考え方を簡単に述べます。最後に、カルマンフィルタを利用する上で重要である時系列データのモデリングについてもお話しします。
本セミナーでは、カルマンフィルタについて基礎から解説いたします。
また、実際に使うためのポイント、応用事例まで平易に解説いたします。
本セミナーでは、GNSSデータとIMUセンサやSPEEDセンサとのの統合手法についてできるだけ平易に紹介いたします。
GNSSはトンネル内や高層ビルが密集した場所や、高架下では残念ながら機能しません。その意味でIMUやSPEEDセンサとのカップリングは非常に相性がよいと考えられます。
本セミナーでは、まず、線形カルマンフィルタのアルゴリズムを紹介し、数値例を通してカルマンフィルタの仕組みについて学習します。続いて、代表的な非線形カルマンフィルタである拡張カルマンフィルタ (EKF) と無香料カルマンフィルタ (UKF) のアルゴリズムを説明し、非線形カルマンフィルタを用いた状態とパラメータの同時推定を導入します。また、カルマンフィルタの数値的不安定性について述べ、その問題点に対処するUD分解フィルタを導入します。さらに、カルマンフィルタの2つの応用例を紹介いたします。
本セミナーでは、カルマンフィルタの基礎理論について詳細に解説します。センシング、制御、あるいは機械学習などのAI の分野とカルマンフィルタの関係についても述べます。できれば、古典制御や現代制御、確率過程などの知識をお持ちの方が望ましいですが、高等学校の数学の知識があれば、本セミナーを理解できるようにお話ししたいと考えています。
本セミナーでは、まず、線形カルマンフィルタのアルゴリズムを紹介し、数値例を通してカルマンフィルタの仕組みについて学習します。
つづいて、非線形カルマンフィルタの考え方を簡単に述べます。最後に、カルマンフィルタを利用する上で重要である時系列データのモデリングについてもお話しします。
本セミナーでは、カルマンフィルタについて基礎から、できるだけわかりやすく解説いたします。
また、応用例としてリチウムイオン二次電池の充電率推定への応用について解説いたします。