技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

開発成果の質と開発効率を向上させる「統計的組合せ最適化:実験計画法」と「Excel上で構築可能な人工知能を使用する汎用的インフォマティクス:非線形実験計画法」実践入門

開発成果の質と開発効率を向上させる「統計的組合せ最適化:実験計画法」と「Excel上で構築可能な人工知能を使用する汎用的インフォマティクス:非線形実験計画法」実践入門

オンライン 開催

視聴期間は2022年12月21日〜27日を予定しております。
お申し込みは2022年12月23日まで承ります。

開催日

  • 2022年12月23日(金) 10時00分 2022年12月27日(火) 16時30分

受講対象者

  • 機械、電子電気部品、材料、家電、加工/生産装置、計測評価機器、医工分野等の製品や技術開発に携わり開発効率を高めたい方
  • 問題に関係する要素が多く体系的な実験解析手法を必要とする方
  • 開発難易度が上がった、未経験分野への進出等、従来のやり方では成果が出ない方
  • 安価な部品や装置で高い性能目標を達成する開発方法を求める方
  • 実験計画法や品質工学 (タグチメソッド) を使ってみたが上手く行かない方

修得知識

  • 数多くの要因の組合せを効率的に実験し、最適条件を導き出す方法
  • 製造業における実験計画法の基本的な考え方から実践手順
  • 製造業における実験計画法の原理的な問題点と解決方法
  • 非線形性が強い複雑な現象の場合に有効なニューラルネットワークモデル (超回帰式) を併用する解析手順
  • Excel上で、簡単にニューラルネットワークモデルを構築する方法と実験計画法への応用ノウハウ
  • 複数の特性値 (多特性) を同時に最適化する実験デザイン、解析方法
  • 各構成要素の条件に関して、飛び飛びの値 (水準) での最適条件化ではなく、連続値として (水準の間も含めて) 最適条件を求める解析方法
  • 複雑な関係を持つ構成要素間の最適な組合せ条件を見つける具体的手順
  • 実験計画法や応答曲面法、品質工学 (タグチメソッド) を開発で使ったが、上手く行かなかった方々への解決策

プログラム

 実験計画法は、少ない実験回数で多くの構成要素が関係する現象の解析が可能です。その解析方法を使うと、本来、数千通りの実験が必要な場合でも、数十通りの実験回数で、構成要素間の最適な組合せ (因子ごとの最適条件) を見つけることが可能です。
 しかしながら、解析の前提として構成要素の組合せ効果が線形モデル (構成要素の影響が足し算で構成された単純なモデル) にもとづくことを前提にしており、構成要素が複雑に絡みあう製造業の開発では、最適条件の推定が外れることが多々ありました。
 本セミナーでは、まず、実験計画法の原理と問題点の解説を行います。その上で、実験計画法の問題点を補うために人工知能の一種であるディープラーニング (ニューラルネットワークモデル=超回帰式) を併用した、製造業の開発により適した非線形実験計画法を解説いたします。
 実験計画法の導入を考えている初学者の方、これまで実験計画法や応答曲面法、品質工学 (タグチメソッド) を使ってみたが上手く行かなかったという方々に、また、多目的最適化が必要な方々に、具体的な解決策を詳細に説明します。
 なお、複雑な現象をモデル化 (数式化) するニューラルネットワークモデルをExcel上で簡単に構築する方法も、デモンストレーションを併用して解説いたします。

  1. 典型的な既存の開発方法の問題点
    1. 解説用事例 洗濯機 振動課題の説明
    2. 既存の開発方法とその問題点
      ※上記の事例は、業界を問わず誰にでもイメージできるモノとして選択しており、洗濯機の振動技術の解説が目的ではありません。
  2. 実験計画法とは
    1. 実験計画法の概要
      1. 本来必要な実験回数よりも少ない実験回数で結果を出す方法の概念
        • 実際の解析方法
        • 実験実務上の注意点 (実際の解析の前提条件)
        • 誤差のマネジメント
        • フィッシャーの三原則
      2. 分散分析とF検定の原理
      3. 実験計画法の原理的な問題点
    2. 検討要素が多い場合の実験計画
      1. 実験計画法の実施手順
      2. ステップ1 『技術的な課題を整理』
      3. ステップ2 『実験条件の検討』
        • 直交表の解説
      4. ステップ3 『実験実施』
      5. ステップ4 『実験結果を分析』
        • 分散分析表 その見方と使い方
        • 工程平均、要因効果図 その見方と使い方
        • 構成要素の一番良い条件組合せの推定と確認実験
      6. 解析ソフトウェアの紹介
      7. 実験計画法解析のデモンストレーション
  3. 実験計画法の問題点
    1. 推定した最適条件が外れる事例の検証
    2. 線形モデル → 非線形モデルへの変更の効果
    3. 非線形性現象 (開発対象によくある現象) に対する2つのアプローチ
  4. 実験計画法の問題点解消方法 ニューラルネットワークモデル (超回帰式) の活用
    1. 複雑な因果関係を数式化するニューラルネットワークモデル (超回帰式) とは
    2. ニューラルネットワークモデル (超回帰式) を使った実験結果のモデル化
    3. 非線形性が強い場合の実験データの追加方法
    4. ニューラルネットワークモデル (超回帰式) 構築ツールの紹介
  5. ニューラルネットワークモデル (超回帰式) を使った最適条件の見つけ方
    1. 直交表の水準替え探索方法
    2. 直交表+乱数による探索方法
    3. 遺伝的アルゴリズム (GA) による探索方法
    4. 確認実験と最適条件が外れた場合の対処法
    5. ニューラルネットワークモデル (超回帰式) の構築と最適化 実演
  6. その他、製造業特有の実験計画法の問題点
    1. 開発対象 (実験対象) の性能を乱す客先使用環境を考慮した開発
    2. 客先使用環境を考慮した開発実験方法 品質工学概要
  7. 学習用 参考文献 紹介
  8. 全体に対する質疑応答

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 25,000円 (税別) / 27,500円 (税込) (案内をご希望の場合に限ります)

案内割引・複数名同時申込割引について

R&D支援センターからの案内登録をご希望の方は、割引特典を受けられます。
案内および割引をご希望される方は、お申込みの際、「案内の希望 (割引適用)」の欄から案内方法をご選択ください。

「案内の希望」をご選択いただいた場合、1名様 45,000円(税別) / 49,500円(税込) で受講いただけます。
複数名で同時に申込いただいた場合、1名様につき 25,000円(税別) / 27,500円(税込) で受講いただけます。

  • R&D支援センターからの案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 45,000円(税別) / 49,500円(税込)
    • 2名様でお申し込みの場合 : 2名で 50,000円(税別) / 55,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 75,000円(税別) / 82,500円(税込)
  • R&D支援センターからの案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 55,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 100,000円(税別) / 110,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 150,000円(税別) / 165,000円(税込)

アーカイブ配信セミナー

  • 当日のセミナーを、後日にお手元のPCやスマホ・タブレッドなどからご視聴・学習することができます。
  • 配信開始となりましたら、改めてメールでご案内いたします。
  • 視聴サイトにログインしていただき、ご視聴いただきます。
  • 視聴期間は2022年12月21日〜27日を予定しております。
    ご視聴いただけなかった場合でも期間延長いたしませんのでご注意ください。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2023/1/30 技術者・研究者のためのコストマネジメント オンライン
2023/1/30 押さえておくべき多変量解析の基本概念と実例による演習 (実務で使用するツール) オンライン
2023/1/30 効率的、確実に目的を達成できる実験の考え方と具体的方法 オンライン
2023/1/30 音と振動からの異常検知と自己教師あり学習 オンライン
2023/1/30 第一原理計算の基礎とマテリアルズ・インフォマティクスへの活用事例 オンライン
2023/1/30 多変量解析の基礎と目的別に適した解析手法 東京都 オンライン
2023/1/30 スケールアップ・ダウン検討、失敗例/解決 (対処) 法と実験計画法による効率的なデータ収集 オンライン
2023/1/30 AI外観検査 (画像識別) のはじめ方、すすめ方 オンライン
2023/1/31 管理図 オンライン
2023/1/31 CO2分離回収技術とプロセス・コスト試算 オンライン
2023/2/3 はじめてのPythonと教師あり学習・教師なし学習 オンライン
2023/2/7 マテリアルズインフォマティクスを活用した材料開発の実践とベイズ最適化の適用 オンライン
2023/2/7 時系列データの基礎と将来予測、異常検知への応用 オンライン
2023/2/7 DX時代の実験方法とデータ活用 オンライン
2023/2/7 実験計画法 (3日間) オンライン
2023/2/7 実験計画法 (1) オンライン
2023/2/8 既存データの活用検討と解析手法の基礎 オンライン
2023/2/8 押さえておくべき多変量解析の基本概念と実例による演習 (実務で使用するツール) オンライン
2023/2/8 「重回帰分析」や「主成分分析」等の多変量解析の考え方と高分子材料設計への活用 オンライン
2023/2/10 有用物質生産のための微生物培養プロセス最適化と省エネ低コスト化 オンライン

関連する出版物

発行年月
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/2/28 撹拌装置の設計とスケールアップ
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/10/18 医療機器の設計・開発時のサンプルサイズ設定と設定根拠
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用
2003/6/27 ニューアルゴリズムによる画像処理システム事例解説
2001/9/28 MATLABプログラム事例解説Ⅱ アドバンスド通信路等化
1993/3/1 新しいサーボ制御の基礎と実用化技術