技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

Pythonによる機械学習の基礎と異常検知の理論、実装方法

Pythonによる機械学習の基礎と異常検知の理論、実装方法

オンライン 開催

概要

本セミナーでは、機械学習全般に共通する基本的な概念、そして特に要望の多い異常検知の理論や実装方法を分かりやすく解説いたします。

開催日

  • 2022年9月28日(水) 10時30分 16時30分

受講対象者

  • 機械学習・異常検知に取り組んで間もない方
  • 機械学習・異常検知を業務で利用しようとしている方
  • Pythonによる機械学習・異常検知を基礎から学びたい方
  • 機械学習・異常検知に興味のある方

修得知識

  • 機械学習・異常検知の基礎
  • 代表的な教師あり学習・教師なし学習の理論的背景と実運用の指針
  • 機械学習に基づく異常検知の基礎と実運用の指針

予備知識

  • 高校卒業程度の数学の知識 (微分、確率・統計、行列計算等)
  • プログラミングの経験 (Pythonでなくても良い)

プログラム

 本セミナーでは、機械学習全般に共通する基本的な概念、そして特に要望の多い異常検知の理論や実装方法を分かりやすく解説します。Python機械学習ライブラリとして有名なscikit-learnを用いた実装の解説し、実際の機械学習の利用方法に関する理解を深めます。さらに、軸受の振動データを対象とした機械学習による欠陥検出や、余寿命予測に関する講演者の具体的な研究事例紹介ならびに関連するコード解説も行います。機械学習に関してこれから本格的な勉強もしくは導入を始める前に概要と雰囲気を掴むには最適です。

  1. 機械学習の概要
    1. ビッグデータ時代
    2. 機械学習とは?
    3. 機械学習の分類
    4. 教師あり学習
      1. 識別
      2. 回帰
    5. 教師なし学習
      1. モデル推定
      2. パターンマイニング
    6. 半教師あり学習
    7. 深層学習 (ディープラーニング)
    8. 強化学習
    9. 機械学習の基本的な手順
      1. 前処理
      2. 次元の呪い
      3. 主成分分析による次元圧縮
      4. バイアスとバリアンス
      5. 評価基準の設定
        • クロスバリエーション
      6. 簡単な識別器
        • k-近傍法
      7. 評価指標
        • F値
        • ROC曲線
  2. 機械学習の実装方法 (Python解説)
    1. Scikit-learnを用いた機械学習の実装方法
    2. k近傍法による識別
  3. 機械学習による異常検知
    1. 異常検知の基本的な考え方
    2. 性能評価の方法
    3. ホテリング理論による異常検知
    4. 主要な異常検知法
      1. One-class Support Vector Machine
      2. Local Outlier Factor
      3. Isolation Forest
      4. ディープラーニングによる異常検知
    5. 各種異常検知法の比較 (Python解説)
  4. 軸受の振動データを対象とした機械学習による欠陥評価
    1. 軸受の微小欠陥検出 (事例紹介)
    2. Pythonコード解説
    3. 軸受の余寿命予測 (事例紹介)
    • 質疑応答

講師

  • 福井 健一
    大阪大学 産業科学研究所 知能アーキテクチャ研究分野
    准教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 45,000円 (税別) / 49,500円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、1名あたり 45,000円(税別) / 49,500円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 55,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,000円(税別) / 99,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 135,000円(税別) / 148,500円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。

アカデミック割引

  • 1名様あたり 30,000円(税別) / 33,000円(税込)

日本国内に所在しており、以下に該当する方は、アカデミック割引が適用いただけます。

  • 学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院、短期大学、附属病院、高等専門学校および各種学校の教員、生徒
  • 病院などの医療機関・医療関連機関に勤務する医療従事者
  • 文部科学省、経済産業省が設置した独立行政法人に勤務する研究者。理化学研究所、産業技術総合研究所など
  • 公設試験研究機関。地方公共団体に置かれる試験所、研究センター、技術センターなどの機関で、試験研究および企業支援に関する業務に従事する方
  • 支払名義が企業の場合は対象外とさせていただきます。
  • 企業に属し、大学、公的機関に派遣または出向されている方は対象外とさせていただきます。

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/12/13 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/13 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/16 AI機械学習に的を絞った行列・偏微分・確率密度の超入門 オンライン
2024/12/16 少ないデータによる異常検知技術の導入と活用方法 オンライン
2024/12/17 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2024/12/17 進化計算を利用した多目的最適化技術とその応用 オンライン
2024/12/19 小規模データに対する機械学習の効果的適用法 オンライン
2024/12/19 電波の基礎知識と電波吸収・シールドへの展開 オンライン
2024/12/20 機械学習のためのデータ前処理技術とノウハウ オンライン
2024/12/23 AI機械学習原理を理解するための数式読み方入門 オンライン
2024/12/23 ディープラーニングに基づく外観検査AI技術 オンライン
2024/12/24 Vision Transformerの仕組みとBEV Perception オンライン
2024/12/24 Pythonを使った時系列データ解析入門 オンライン
2025/1/7 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2025/1/10 Pythonを使った時系列データ解析入門 オンライン
2025/1/14 自然言語処理を活用した研究開発、材料分野への適応事例 オンライン
2025/1/14 画像認識技術を用いたAI外観検査の現場導入事例と精度向上技術 オンライン
2025/1/15 Python実践データ分析/機械学習 オンライン
2025/1/20 ベイズ最適化を活用した実験の効率化と開発期間短縮 オンライン
2025/1/20 Pythonを用いてコンピュータビジョンの理論と実践を学ぶ オンライン