技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

Pythonで学ぶ機械学習と異常検知および余寿命推定への適用

Zoomを使ったライブ配信セミナー

Pythonで学ぶ機械学習と異常検知および余寿命推定への適用

オンライン 開催

概要

本セミナーでは、機械学習における「教師なし学習」について、特に要望の多い「異常検知」の理論や手法の説明とともにPythonを用いた実装の解説を交えて機械学習の理解を深めます。

開催日

  • 2020年12月4日(金) 10時00分 17時00分

受講対象者

  • 機械学習・異常検知に取り組んで間もない方
  • 機械学習・異常検知を業務で利用しようとしている方
  • Pythonによる機械学習・異常検知を基礎から学びたい方
  • 機械学習・異常検知に興味のある方

修得知識

  • 機械学習・異常検知の基礎
  • 代表的な教師なし学習の理論的背景と実運用の指針
  • 機械学習に基づく異常検知の基礎と実運用の指針

予備知識

  • 高校卒業程度の数学の知識 (微分、確率・統計、行列計算等)
  • プログラミングの経験 (Pythonでなくても良い)

プログラム

 昨今のAIブームの火付け役とも言えるディープラーニングは強力な学習手法ですが、万能ではありません。問題の特性をよく理解して適切な機械学習手法を選択し、適切に用いることが重要です。
 本セミナーでは、機械学習における「教師なし学習」について、また、特に要望の多い「異常検知」の理論や手法の説明とともにPythonを用いた実装の解説を交えて機械学習の理解を深めます。これから本格的な勉強を始める前に概要と雰囲気を掴むには最適かと思います。

  1. 機械学習の概要
    1. ビッグデータ時代
    2. 機械学習とは?
    3. 最近の例
    4. 機械学習の分類
    5. 教師あり学習
      1. 識別
      2. 回帰
    6. 教師なし学習
      1. モデル推定
      2. パターンマイニング
    7. 半教師あり学習
    8. 深層学習 (ディープラーニング)
    9. 強化学習
    10. 機械学習の基本的な手順
      1. 前処理
      2. 次元の呪い
      3. 主成分分析による次元圧縮
      4. バイアスとバリアンス
      5. 評価基準の設定:クロスバリエーション
      6. 簡単な識別器:k-近傍法
      7. 評価指標:F値,ROC曲線
    11. 機械学習の基本的な実装 (Python解説)
  2. 機械学習による異常検知
    1. 異常検知の基本的な考え方
    2. 性能評価の方法
    3. ホテリング理論による異常検知
    4. 主要な異常検知法
      1. One-class Support Vector Machine
      2. Local Outlier Factor
      3. Isolation Forest
    5. 各種異常検知法の比較 (Python解説)
  3. 回転機器の振動データに対する異常検知
    1. 微小欠陥検知の事例紹介
    2. Pythonコード解説
  4. 回転機器の余寿命予測
    1. 階層ベイズによる余寿命予測
    2. 事例紹介

講師

  • 福井 健一
    大阪大学 産業科学研究所 知能アーキテクチャ研究分野
    准教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 51,700円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境 をご確認いただき、 ミーティングテスト にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は郵送にて前日までにお送りいたします。電子媒体での配布はございません。
  • 開催まで4営業日を過ぎたお申込みの場合、セミナー資料の到着が、開講日に間に合わない可能性がありますこと、ご了承下さい。
    ライブ配信の画面上でスライド資料は表示されますので、セミナー視聴には差し支えございません。
    印刷物は後日お手元に届くことになります。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/2/25 プラスチック・ゴム材料における劣化の調べ方・耐久性評価法・寿命予測法とその実際 東京都 会場・オンライン
2025/2/25 AI・LLMの学習時間短縮と性能、回答精度向上 オンライン
2025/2/25 反応装置・プロセス設計の基礎とスケールアップの留意点 オンライン
2025/2/26 ChatGPTによる多変量解析の進め方 オンライン
2025/2/26 Vision Transformerの仕組みとBEV Perception オンライン
2025/2/26 化粧品品質安定性確保と評価の進め方・トラブル対応 オンライン
2025/2/26 マテリアルズインフォマティクスの動向と小規模・実験データへの応用 オンライン
2025/2/27 GMP/GQP-QAが行うべき逸脱管理とCAPAの適切性の評価とチェックリストの活用 オンライン
2025/2/27 医薬品CMC・製造におけるAI・機械学習・データ活用の課題と導入のポイント オンライン
2025/2/28 形骸化したFMEAを改善した実践演習セミナー (問題発見 + 問題解決) オンライン
2025/2/28 形骸化したFMEAを改善した実践演習セミナー (問題発見) オンライン
2025/3/4 マテリアルズインフォマティクスの動向と小規模・実験データへの応用 オンライン
2025/3/5 ゴム・プラスチック材料の破損・破壊原因と対策事例及び寿命予測 東京都 会場・オンライン
2025/3/5 反応装置・プロセス設計の基礎とスケールアップの留意点 オンライン
2025/3/7 エッジAIの実現に向けた課題、展望と産業応用事例 オンライン
2025/3/14 信頼性基準適用試験における運用への落とし込み・記録の残し方と (国内外) 委託時の信頼性保証 オンライン
2025/3/14 量産に耐えうる最適設計仕様を導く非線形ロバスト最適化 / 非線形ロバストデザイン オンライン
2025/3/17 信頼性の基礎 (2日間) オンライン
2025/3/17 信頼性の基礎 (1) オンライン
2025/3/18 GLP省令:施設/試験で押さえるべき信頼性確保と最終報告書・生データの信頼性 オンライン

関連する出版物

発行年月
2023/6/30 加速試験の実施とモデルを活用した製品寿命予測
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/1/12 製造DX推進のための外観検査自動化ガイドブック
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/10/18 医療機器の設計・開発時のサンプルサイズ設定と設定根拠
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/11/6 QC工程表・作業手順書の作り方
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/8/30 ヒューマンエラーの発生要因と削減・再発防止策
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用